Shane A. Chandler, Angela S. Gehrckens, Laila M.N. Shah, Katherine E. Buckton, Guodong Cao, Navoneel Sen, Tilo Zollitsch, Ryan Rodriguez, Ilia A. Solov’yov, Erik Schleicher, Stefan Weber, P.J. Hore, Christiane R. Timmel, Stuart R. Mackenzie, Justin L.P. Benesch
{"title":"果蝇隐花色素的光诱导构象开关和磁敏感性","authors":"Shane A. Chandler, Angela S. Gehrckens, Laila M.N. Shah, Katherine E. Buckton, Guodong Cao, Navoneel Sen, Tilo Zollitsch, Ryan Rodriguez, Ilia A. Solov’yov, Erik Schleicher, Stefan Weber, P.J. Hore, Christiane R. Timmel, Stuart R. Mackenzie, Justin L.P. Benesch","doi":"10.1016/j.str.2025.08.003","DOIUrl":null,"url":null,"abstract":"Cryptochromes are light-sensitive flavoproteins with various biological roles, including a proposed function in magnetoreception. This mechanism rests on a magnetically sensitive photochemical reaction of the flavin chromophore with a chain of tryptophan residues within the protein scaffold. However, the protein-mediated mechanisms of magnetic signal transduction are unclear. We have examined the response of an archetypal cryptochrome, <em>Dm</em>CRY, to photochemical activation by means of hydrogen-deuterium exchange mass spectrometry, complemented by molecular dynamics simulations and cavity ring-down spectroscopy. We were able to measure the dynamics of <em>Dm</em>CRY at near-residue level resolution, revealing a reversible, long-lived, blue-light induced conformational change in the protein’s C-terminal tail. This putative signaling state was validated using different illumination conditions, and by examining <em>Dm</em>CRY variants in which the electron transfer chain was perturbed. Our results show how the photochemical behavior of the flavin chromophore generates a state of <em>Dm</em>CRY that may initiate downstream interactions.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"23 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-induced conformational switching and magnetic sensitivity of Drosophila cryptochrome\",\"authors\":\"Shane A. Chandler, Angela S. Gehrckens, Laila M.N. Shah, Katherine E. Buckton, Guodong Cao, Navoneel Sen, Tilo Zollitsch, Ryan Rodriguez, Ilia A. Solov’yov, Erik Schleicher, Stefan Weber, P.J. Hore, Christiane R. Timmel, Stuart R. Mackenzie, Justin L.P. Benesch\",\"doi\":\"10.1016/j.str.2025.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cryptochromes are light-sensitive flavoproteins with various biological roles, including a proposed function in magnetoreception. This mechanism rests on a magnetically sensitive photochemical reaction of the flavin chromophore with a chain of tryptophan residues within the protein scaffold. However, the protein-mediated mechanisms of magnetic signal transduction are unclear. We have examined the response of an archetypal cryptochrome, <em>Dm</em>CRY, to photochemical activation by means of hydrogen-deuterium exchange mass spectrometry, complemented by molecular dynamics simulations and cavity ring-down spectroscopy. We were able to measure the dynamics of <em>Dm</em>CRY at near-residue level resolution, revealing a reversible, long-lived, blue-light induced conformational change in the protein’s C-terminal tail. This putative signaling state was validated using different illumination conditions, and by examining <em>Dm</em>CRY variants in which the electron transfer chain was perturbed. Our results show how the photochemical behavior of the flavin chromophore generates a state of <em>Dm</em>CRY that may initiate downstream interactions.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2025.08.003\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.08.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Light-induced conformational switching and magnetic sensitivity of Drosophila cryptochrome
Cryptochromes are light-sensitive flavoproteins with various biological roles, including a proposed function in magnetoreception. This mechanism rests on a magnetically sensitive photochemical reaction of the flavin chromophore with a chain of tryptophan residues within the protein scaffold. However, the protein-mediated mechanisms of magnetic signal transduction are unclear. We have examined the response of an archetypal cryptochrome, DmCRY, to photochemical activation by means of hydrogen-deuterium exchange mass spectrometry, complemented by molecular dynamics simulations and cavity ring-down spectroscopy. We were able to measure the dynamics of DmCRY at near-residue level resolution, revealing a reversible, long-lived, blue-light induced conformational change in the protein’s C-terminal tail. This putative signaling state was validated using different illumination conditions, and by examining DmCRY variants in which the electron transfer chain was perturbed. Our results show how the photochemical behavior of the flavin chromophore generates a state of DmCRY that may initiate downstream interactions.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.