2.4 myr偏心率调节碳循环引起的100 kyr气候周期

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhifeng Zhang, Yongjian Huang, Chao Ma, Qiuzhen Yin, Hanfei Yang, Eun Young Lee, Hai Cheng, Benjamin Sames, Michael Wagreich, Tiantian Wang, Qingping Liu, Chengshan Wang
{"title":"2.4 myr偏心率调节碳循环引起的100 kyr气候周期","authors":"Zhifeng Zhang, Yongjian Huang, Chao Ma, Qiuzhen Yin, Hanfei Yang, Eun Young Lee, Hai Cheng, Benjamin Sames, Michael Wagreich, Tiantian Wang, Qingping Liu, Chengshan Wang","doi":"10.1038/s41467-025-63403-4","DOIUrl":null,"url":null,"abstract":"<p>Earth’s climate has been dominated by ~100-kyr glacial cycles over the past ~800 ka, yet the mechanism remains debated. Here, we present correlation analyses of spectral power ratios of global records spanning the past 2.7 Ma, revealing a persistent anticorrelation between ~21-kyr and ~100-kyr power ratios, but no significant relationship between ~41-kyr and ~100-kyr power ratios. This suggests that ~100-kyr climate cycles are more related to eccentricity-modulated precession than to obliquity. Phase analyses of benthic δ<sup>18</sup>O/ice volume and δ<sup>13</sup>C (carbon cycle) since Antarctic glaciation onset (~34 Ma) show that strong ~100-kyr cycles emerged only when these proxies were phase-coupled. Such coupling recurred at ~2.4-Myr eccentricity maxima during the unipolar regime (before 7.5 Ma) and minima during the bipolar regime (after 4 Ma), explaining the persistent ~21-kyr/~100-kyr anticorrelation because eccentricity modulates precession amplitude. We propose that internal carbon cycle dynamics and ~2.4-Myr eccentricity-modulated δ¹⁸O/ice volume–δ¹³C coupling amplified ~100-kyr climate cycles not only over the past ~800 ka but since 34 Ma. Given that eccentricity will remain low for the next 400 kyr, ~100-kyr periodicities may continue to dominate future climate variability, assuming Earth remains in a bipolar regime.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"23 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"100-kyr climate cycles caused by 2.4-Myr eccentricity-modulated carbon cycles\",\"authors\":\"Zhifeng Zhang, Yongjian Huang, Chao Ma, Qiuzhen Yin, Hanfei Yang, Eun Young Lee, Hai Cheng, Benjamin Sames, Michael Wagreich, Tiantian Wang, Qingping Liu, Chengshan Wang\",\"doi\":\"10.1038/s41467-025-63403-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Earth’s climate has been dominated by ~100-kyr glacial cycles over the past ~800 ka, yet the mechanism remains debated. Here, we present correlation analyses of spectral power ratios of global records spanning the past 2.7 Ma, revealing a persistent anticorrelation between ~21-kyr and ~100-kyr power ratios, but no significant relationship between ~41-kyr and ~100-kyr power ratios. This suggests that ~100-kyr climate cycles are more related to eccentricity-modulated precession than to obliquity. Phase analyses of benthic δ<sup>18</sup>O/ice volume and δ<sup>13</sup>C (carbon cycle) since Antarctic glaciation onset (~34 Ma) show that strong ~100-kyr cycles emerged only when these proxies were phase-coupled. Such coupling recurred at ~2.4-Myr eccentricity maxima during the unipolar regime (before 7.5 Ma) and minima during the bipolar regime (after 4 Ma), explaining the persistent ~21-kyr/~100-kyr anticorrelation because eccentricity modulates precession amplitude. We propose that internal carbon cycle dynamics and ~2.4-Myr eccentricity-modulated δ¹⁸O/ice volume–δ¹³C coupling amplified ~100-kyr climate cycles not only over the past ~800 ka but since 34 Ma. Given that eccentricity will remain low for the next 400 kyr, ~100-kyr periodicities may continue to dominate future climate variability, assuming Earth remains in a bipolar regime.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-63403-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63403-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在过去的约800 ka中,地球气候一直受约100 kyr的冰期旋回支配,但其机制仍存在争议。在此,我们对过去2.7 Ma全球记录的光谱功率比进行了相关分析,发现~21-kyr和~100-kyr功率比之间存在持续的反相关关系,而~41-kyr和~100-kyr功率比之间没有显著的相关关系。这表明~100 kyr气候周期与偏心率调制岁差的关系大于与倾角的关系。南极冰期开始(~34 Ma)以来底栖生物δ18O/冰体积和δ13C(碳循环)的相位分析表明,只有当这些代用物相耦合时,才会出现强烈的~100 kyr旋回。这种耦合在单极区(7.5 Ma之前)的~2.4 myr偏心率最大,在双极区(4 Ma之后)的~2.4 myr偏心率最小,解释了持续的~21 kyr/~100 kyr反相关,因为偏心率调节了进动幅度。我们提出,内部碳循环动力学和~2.4 myr偏心率调制的δ¹⁸O/冰体积-δ¹³C耦合不仅放大了过去~800 ka的~100-kyr气候周期,而且放大了34 Ma以来的~100-kyr气候周期。假设地球仍处于两极状态,离心率在未来400千基尔将保持在较低水平,那么~100千基尔的周期可能继续主导未来的气候变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

100-kyr climate cycles caused by 2.4-Myr eccentricity-modulated carbon cycles

100-kyr climate cycles caused by 2.4-Myr eccentricity-modulated carbon cycles

Earth’s climate has been dominated by ~100-kyr glacial cycles over the past ~800 ka, yet the mechanism remains debated. Here, we present correlation analyses of spectral power ratios of global records spanning the past 2.7 Ma, revealing a persistent anticorrelation between ~21-kyr and ~100-kyr power ratios, but no significant relationship between ~41-kyr and ~100-kyr power ratios. This suggests that ~100-kyr climate cycles are more related to eccentricity-modulated precession than to obliquity. Phase analyses of benthic δ18O/ice volume and δ13C (carbon cycle) since Antarctic glaciation onset (~34 Ma) show that strong ~100-kyr cycles emerged only when these proxies were phase-coupled. Such coupling recurred at ~2.4-Myr eccentricity maxima during the unipolar regime (before 7.5 Ma) and minima during the bipolar regime (after 4 Ma), explaining the persistent ~21-kyr/~100-kyr anticorrelation because eccentricity modulates precession amplitude. We propose that internal carbon cycle dynamics and ~2.4-Myr eccentricity-modulated δ¹⁸O/ice volume–δ¹³C coupling amplified ~100-kyr climate cycles not only over the past ~800 ka but since 34 Ma. Given that eccentricity will remain low for the next 400 kyr, ~100-kyr periodicities may continue to dominate future climate variability, assuming Earth remains in a bipolar regime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信