{"title":"miRNA鸡尾酒协调细胞反应,促进糖尿病伤口愈合","authors":"Yejing Huang, Liping Zhu, Jiating Wang, Ling Pan, Yong Yang, Dongqing Li","doi":"10.1093/burnst/tkaf060","DOIUrl":null,"url":null,"abstract":"Background Chronic wounds, particularly diabetic ulcers, impose significant health and economic burdens globally because of their complex pathology and the limited availability of therapeutic approaches. Multiple microRNAs (miRNAs) play crucial roles in regulating biological processes in wound healing. However, single-miRNA therapies may not fully overcome multifaceted barriers of impaired wound repair. Efforts to discover more effective wound therapies continue unabated. Methods In this study, we developed a microRNA cocktail that targets multiple critical phases of the wound healing: inflammation, re-epithelialization, granulation tissue formation and angiogenesis. This therapeutic cocktail includes locked nucleic acid (LNA)-modified mimics of miR-19b-3p, miR-132-3p, and miR-31-5p, along with an inhibitor of miR-92a-3p, which are delivered via in vivo-jetPEI as the carrier, addressing the multifaceted nature of wound repair mechanisms. The wound healing efficacy of the cocktail were systematically evaluated in mouse models of acute and chronic wounds. Results Local application of the miRNA cocktail to wounds markedly enhanced acute wound healing in wild-type mice, outperforming the effects of the individual miRNAs. Moreover, the miRNA cocktail accelerated diabetic wound healing by orchestrating coordinated cellular responses at the wound site and significantly decreasing inflammatory cytokine expression and CD68+ macrophage migration while promoting re-epithelialization, angiogenesis and granulation tissue formation. Notably, the cocktail also facilitated nerve regeneration in the wound area at day 30 post-injury. Conclusions Our findings suggest that this miRNA cocktail has potential therapeutic value for revitalizing the healing process in chronic wounds. Therefore, further investigations in controlled clinical trials are warranted to confirm the efficacy and applicability of this miRNA cocktail in a clinical setting.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"10 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A miRNA cocktail orchestrates coordinated cellular responses to promote diabetic wound healing\",\"authors\":\"Yejing Huang, Liping Zhu, Jiating Wang, Ling Pan, Yong Yang, Dongqing Li\",\"doi\":\"10.1093/burnst/tkaf060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background Chronic wounds, particularly diabetic ulcers, impose significant health and economic burdens globally because of their complex pathology and the limited availability of therapeutic approaches. Multiple microRNAs (miRNAs) play crucial roles in regulating biological processes in wound healing. However, single-miRNA therapies may not fully overcome multifaceted barriers of impaired wound repair. Efforts to discover more effective wound therapies continue unabated. Methods In this study, we developed a microRNA cocktail that targets multiple critical phases of the wound healing: inflammation, re-epithelialization, granulation tissue formation and angiogenesis. This therapeutic cocktail includes locked nucleic acid (LNA)-modified mimics of miR-19b-3p, miR-132-3p, and miR-31-5p, along with an inhibitor of miR-92a-3p, which are delivered via in vivo-jetPEI as the carrier, addressing the multifaceted nature of wound repair mechanisms. The wound healing efficacy of the cocktail were systematically evaluated in mouse models of acute and chronic wounds. Results Local application of the miRNA cocktail to wounds markedly enhanced acute wound healing in wild-type mice, outperforming the effects of the individual miRNAs. Moreover, the miRNA cocktail accelerated diabetic wound healing by orchestrating coordinated cellular responses at the wound site and significantly decreasing inflammatory cytokine expression and CD68+ macrophage migration while promoting re-epithelialization, angiogenesis and granulation tissue formation. Notably, the cocktail also facilitated nerve regeneration in the wound area at day 30 post-injury. Conclusions Our findings suggest that this miRNA cocktail has potential therapeutic value for revitalizing the healing process in chronic wounds. Therefore, further investigations in controlled clinical trials are warranted to confirm the efficacy and applicability of this miRNA cocktail in a clinical setting.\",\"PeriodicalId\":9553,\"journal\":{\"name\":\"Burns & Trauma\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Burns & Trauma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/burnst/tkaf060\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkaf060","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
A miRNA cocktail orchestrates coordinated cellular responses to promote diabetic wound healing
Background Chronic wounds, particularly diabetic ulcers, impose significant health and economic burdens globally because of their complex pathology and the limited availability of therapeutic approaches. Multiple microRNAs (miRNAs) play crucial roles in regulating biological processes in wound healing. However, single-miRNA therapies may not fully overcome multifaceted barriers of impaired wound repair. Efforts to discover more effective wound therapies continue unabated. Methods In this study, we developed a microRNA cocktail that targets multiple critical phases of the wound healing: inflammation, re-epithelialization, granulation tissue formation and angiogenesis. This therapeutic cocktail includes locked nucleic acid (LNA)-modified mimics of miR-19b-3p, miR-132-3p, and miR-31-5p, along with an inhibitor of miR-92a-3p, which are delivered via in vivo-jetPEI as the carrier, addressing the multifaceted nature of wound repair mechanisms. The wound healing efficacy of the cocktail were systematically evaluated in mouse models of acute and chronic wounds. Results Local application of the miRNA cocktail to wounds markedly enhanced acute wound healing in wild-type mice, outperforming the effects of the individual miRNAs. Moreover, the miRNA cocktail accelerated diabetic wound healing by orchestrating coordinated cellular responses at the wound site and significantly decreasing inflammatory cytokine expression and CD68+ macrophage migration while promoting re-epithelialization, angiogenesis and granulation tissue formation. Notably, the cocktail also facilitated nerve regeneration in the wound area at day 30 post-injury. Conclusions Our findings suggest that this miRNA cocktail has potential therapeutic value for revitalizing the healing process in chronic wounds. Therefore, further investigations in controlled clinical trials are warranted to confirm the efficacy and applicability of this miRNA cocktail in a clinical setting.
期刊介绍:
The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.