卟啉银簇组装材料中可控活性氧生成的连通性-工程-定向O2吸附能力和分子轨道分布

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Di‐Feng Yang, Yu Zhang, Wen‐Yan Huang, Haotian Chen, Lu Li, Cong Xu, Shengchang Xiang, Banglin Chen, Jia‐Qi Wang, Zhangjing Zhang
{"title":"卟啉银簇组装材料中可控活性氧生成的连通性-工程-定向O2吸附能力和分子轨道分布","authors":"Di‐Feng Yang, Yu Zhang, Wen‐Yan Huang, Haotian Chen, Lu Li, Cong Xu, Shengchang Xiang, Banglin Chen, Jia‐Qi Wang, Zhangjing Zhang","doi":"10.1002/adfm.202518488","DOIUrl":null,"url":null,"abstract":"Regulating the generation of reactive oxygen species (ROS) plays a crucial role in the selectivity and activity of photocatalytic oxidation, but the current regulation strategies have been limited to unit variation. Herein, two atomically precise porphyrinic silver cluster assembled materials are elaborately designed and constructed via the solvent‐triggered connectivity engineering. The two Ag cluster‐based frameworks, [Cl@Ag<jats:sub>16</jats:sub>(S<jats:sup>t</jats:sup>Bu)<jats:sub>8</jats:sub>(CF<jats:sub>3</jats:sub>COO)<jats:sub>7</jats:sub>(TPyP)(DMF)]<jats:sub>n</jats:sub> (2D‐Ag<jats:sub>16</jats:sub>‐TPyP) and [Cl@Ag<jats:sub>16</jats:sub>(S<jats:sup>t</jats:sup>Bu)<jats:sub>8</jats:sub>(CF<jats:sub>3</jats:sub>COO)<jats:sub>6</jats:sub>(MeO)(TPyP)(H<jats:sub>2</jats:sub>O)]<jats:sub>n</jats:sub> (3D‐Ag<jats:sub>16</jats:sub>‐TPyP), feature different dimensionality and topological structures, which can be attributed to flexible connectivity offered by labile ligands. Remarkably, 2D‐Ag<jats:sub>16</jats:sub>‐TPyP facilitates the coexistence of <jats:sup>1</jats:sup>O<jats:sub>2</jats:sub> and O<jats:sub>2</jats:sub><jats:sup>•−</jats:sup> under photoexcitation. By contrast, 3D‐Ag<jats:sub>16</jats:sub>‐TPyP exhibited a superior performance in activating O<jats:sub>2</jats:sub> to form <jats:sup>1</jats:sup>O<jats:sub>2</jats:sub> compared to its 2D counterpart. The photoelectro‐chemical study conjugated with density‐functional theory (DFT) calculations revealed that the distinct connection modes can not only cause differences in O<jats:sub>2</jats:sub> adsorption affinity, but also directly influence HOMO‐LUMO distribution, which can affect electron/energy transfer efficiency and O<jats:sub>2</jats:sub><jats:sup>•−</jats:sup>/<jats:sup>1</jats:sup>O<jats:sub>2</jats:sub> generation. Furthermore, the manipulation of ROS generation pathways of 2D‐Ag<jats:sub>16</jats:sub>‐TPyP and 3D‐Ag<jats:sub>16</jats:sub>‐TPyP successively leads to distinct performance in two specific photocatalytic oxidations. This study demonstrates a highly efficient strategy that utilizes synergistic modulation of O<jats:sub>2</jats:sub> adsorption capability and molecular orbital distribution to regulate the generation of ROS via connectivity engineering.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"24 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connectivity‐Engineering‐Directed O2 Adsorption Capability and Molecular Orbital Distribution for Controllable Reactive Oxygen Species Generation in Porphyrinic Silver Cluster Assembled Materials\",\"authors\":\"Di‐Feng Yang, Yu Zhang, Wen‐Yan Huang, Haotian Chen, Lu Li, Cong Xu, Shengchang Xiang, Banglin Chen, Jia‐Qi Wang, Zhangjing Zhang\",\"doi\":\"10.1002/adfm.202518488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regulating the generation of reactive oxygen species (ROS) plays a crucial role in the selectivity and activity of photocatalytic oxidation, but the current regulation strategies have been limited to unit variation. Herein, two atomically precise porphyrinic silver cluster assembled materials are elaborately designed and constructed via the solvent‐triggered connectivity engineering. The two Ag cluster‐based frameworks, [Cl@Ag<jats:sub>16</jats:sub>(S<jats:sup>t</jats:sup>Bu)<jats:sub>8</jats:sub>(CF<jats:sub>3</jats:sub>COO)<jats:sub>7</jats:sub>(TPyP)(DMF)]<jats:sub>n</jats:sub> (2D‐Ag<jats:sub>16</jats:sub>‐TPyP) and [Cl@Ag<jats:sub>16</jats:sub>(S<jats:sup>t</jats:sup>Bu)<jats:sub>8</jats:sub>(CF<jats:sub>3</jats:sub>COO)<jats:sub>6</jats:sub>(MeO)(TPyP)(H<jats:sub>2</jats:sub>O)]<jats:sub>n</jats:sub> (3D‐Ag<jats:sub>16</jats:sub>‐TPyP), feature different dimensionality and topological structures, which can be attributed to flexible connectivity offered by labile ligands. Remarkably, 2D‐Ag<jats:sub>16</jats:sub>‐TPyP facilitates the coexistence of <jats:sup>1</jats:sup>O<jats:sub>2</jats:sub> and O<jats:sub>2</jats:sub><jats:sup>•−</jats:sup> under photoexcitation. By contrast, 3D‐Ag<jats:sub>16</jats:sub>‐TPyP exhibited a superior performance in activating O<jats:sub>2</jats:sub> to form <jats:sup>1</jats:sup>O<jats:sub>2</jats:sub> compared to its 2D counterpart. The photoelectro‐chemical study conjugated with density‐functional theory (DFT) calculations revealed that the distinct connection modes can not only cause differences in O<jats:sub>2</jats:sub> adsorption affinity, but also directly influence HOMO‐LUMO distribution, which can affect electron/energy transfer efficiency and O<jats:sub>2</jats:sub><jats:sup>•−</jats:sup>/<jats:sup>1</jats:sup>O<jats:sub>2</jats:sub> generation. Furthermore, the manipulation of ROS generation pathways of 2D‐Ag<jats:sub>16</jats:sub>‐TPyP and 3D‐Ag<jats:sub>16</jats:sub>‐TPyP successively leads to distinct performance in two specific photocatalytic oxidations. This study demonstrates a highly efficient strategy that utilizes synergistic modulation of O<jats:sub>2</jats:sub> adsorption capability and molecular orbital distribution to regulate the generation of ROS via connectivity engineering.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202518488\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202518488","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

调控活性氧(ROS)的生成对光催化氧化的选择性和活性起着至关重要的作用,但目前的调控策略仅限于单位变化。本文通过溶剂引发的连通性工程,精心设计和构建了两种原子精确的卟啉银簇组装材料。两种基于Ag簇的框架[Cl@Ag16(StBu)8(CF3COO)7(TPyP)(DMF)]n (2D‐Ag16‐TPyP)和[Cl@Ag16(StBu)8(CF3COO)6(MeO)(TPyP)(H2O)]n (3D‐Ag16‐TPyP)具有不同的维数和拓扑结构,这可归因于不稳定配体提供的灵活连接。值得注意的是,2D‐Ag16‐TPyP在光激发下促进了1O2和O2•−的共存。相比之下,3D‐Ag16‐TPyP在激活O2形成1O2方面表现出优于2D复合物的性能。结合密度泛函理论(DFT)计算的光电化学研究表明,不同的连接模式不仅会导致O2吸附亲和性的差异,还会直接影响HOMO - LUMO的分布,从而影响电子/能量传递效率和O2•−/1O2的生成。此外,对2D‐Ag16‐TPyP和3D‐Ag16‐TPyP的ROS生成途径的操作依次导致了两种特定光催化氧化的不同性能。本研究展示了一种高效的策略,通过连通性工程,利用O2吸附能力和分子轨道分布的协同调节来调节ROS的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connectivity‐Engineering‐Directed O2 Adsorption Capability and Molecular Orbital Distribution for Controllable Reactive Oxygen Species Generation in Porphyrinic Silver Cluster Assembled Materials
Regulating the generation of reactive oxygen species (ROS) plays a crucial role in the selectivity and activity of photocatalytic oxidation, but the current regulation strategies have been limited to unit variation. Herein, two atomically precise porphyrinic silver cluster assembled materials are elaborately designed and constructed via the solvent‐triggered connectivity engineering. The two Ag cluster‐based frameworks, [Cl@Ag16(StBu)8(CF3COO)7(TPyP)(DMF)]n (2D‐Ag16‐TPyP) and [Cl@Ag16(StBu)8(CF3COO)6(MeO)(TPyP)(H2O)]n (3D‐Ag16‐TPyP), feature different dimensionality and topological structures, which can be attributed to flexible connectivity offered by labile ligands. Remarkably, 2D‐Ag16‐TPyP facilitates the coexistence of 1O2 and O2•− under photoexcitation. By contrast, 3D‐Ag16‐TPyP exhibited a superior performance in activating O2 to form 1O2 compared to its 2D counterpart. The photoelectro‐chemical study conjugated with density‐functional theory (DFT) calculations revealed that the distinct connection modes can not only cause differences in O2 adsorption affinity, but also directly influence HOMO‐LUMO distribution, which can affect electron/energy transfer efficiency and O2•−/1O2 generation. Furthermore, the manipulation of ROS generation pathways of 2D‐Ag16‐TPyP and 3D‐Ag16‐TPyP successively leads to distinct performance in two specific photocatalytic oxidations. This study demonstrates a highly efficient strategy that utilizes synergistic modulation of O2 adsorption capability and molecular orbital distribution to regulate the generation of ROS via connectivity engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信