Congjun Yu, Linda Yiu, Zining Zhang, Guangbin Dong
{"title":"通过定向6π活化,钌催化非活化芳烃的选择性饱和","authors":"Congjun Yu, Linda Yiu, Zining Zhang, Guangbin Dong","doi":"10.1038/s41929-025-01404-8","DOIUrl":null,"url":null,"abstract":"Directing group-based strategies have proven highly effective for site-selective functionalization of π bonds in alkenes and carbonyls, as well as C–H and C–C bonds, but have yet to be demonstrated for unactivated aromatic π-systems. Meanwhile, catalytic hydrogenation of arenes to their corresponding saturated carbo- or heterocycles offers a straightforward approach to increase molecular three-dimensionality and sp3 carbon content in pharmaceutical compounds; however, it remains challenging to achieve site-selective dearomatization among electronically and sterically unbiased arenes. Here we report a Ru-catalysed directed arene saturation, which selectively reduces the aryl group adjacent to the directing moiety. Remarkably, a number of easily reducible functional groups are compatible with the mild reaction conditions. The preliminary mechanistic study reveals a homogeneous catalysis process and the potential involvement of an η6-arene-ruthenium intermediate. The synthetic utility of this method is demonstrated in the streamlined synthesis of cis-atovaquone, gram-scale reactions and late-stage saturation of complex bioactive compounds. Directing group strategies for selective dearomatization of unactivated aromatic π-systems have remained elusive. Now a homogeneous ruthenium catalyst, aided by a removable directing group, enables the site-selective hydrogenation of less reactive arene moieties in polyaryl compounds.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 9","pages":"931-938"},"PeriodicalIF":44.6000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Site-selective Ru-catalysed saturation of unactivated arenes via directed 6π activation\",\"authors\":\"Congjun Yu, Linda Yiu, Zining Zhang, Guangbin Dong\",\"doi\":\"10.1038/s41929-025-01404-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Directing group-based strategies have proven highly effective for site-selective functionalization of π bonds in alkenes and carbonyls, as well as C–H and C–C bonds, but have yet to be demonstrated for unactivated aromatic π-systems. Meanwhile, catalytic hydrogenation of arenes to their corresponding saturated carbo- or heterocycles offers a straightforward approach to increase molecular three-dimensionality and sp3 carbon content in pharmaceutical compounds; however, it remains challenging to achieve site-selective dearomatization among electronically and sterically unbiased arenes. Here we report a Ru-catalysed directed arene saturation, which selectively reduces the aryl group adjacent to the directing moiety. Remarkably, a number of easily reducible functional groups are compatible with the mild reaction conditions. The preliminary mechanistic study reveals a homogeneous catalysis process and the potential involvement of an η6-arene-ruthenium intermediate. The synthetic utility of this method is demonstrated in the streamlined synthesis of cis-atovaquone, gram-scale reactions and late-stage saturation of complex bioactive compounds. Directing group strategies for selective dearomatization of unactivated aromatic π-systems have remained elusive. Now a homogeneous ruthenium catalyst, aided by a removable directing group, enables the site-selective hydrogenation of less reactive arene moieties in polyaryl compounds.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"8 9\",\"pages\":\"931-938\"},\"PeriodicalIF\":44.6000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-025-01404-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-025-01404-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Site-selective Ru-catalysed saturation of unactivated arenes via directed 6π activation
Directing group-based strategies have proven highly effective for site-selective functionalization of π bonds in alkenes and carbonyls, as well as C–H and C–C bonds, but have yet to be demonstrated for unactivated aromatic π-systems. Meanwhile, catalytic hydrogenation of arenes to their corresponding saturated carbo- or heterocycles offers a straightforward approach to increase molecular three-dimensionality and sp3 carbon content in pharmaceutical compounds; however, it remains challenging to achieve site-selective dearomatization among electronically and sterically unbiased arenes. Here we report a Ru-catalysed directed arene saturation, which selectively reduces the aryl group adjacent to the directing moiety. Remarkably, a number of easily reducible functional groups are compatible with the mild reaction conditions. The preliminary mechanistic study reveals a homogeneous catalysis process and the potential involvement of an η6-arene-ruthenium intermediate. The synthetic utility of this method is demonstrated in the streamlined synthesis of cis-atovaquone, gram-scale reactions and late-stage saturation of complex bioactive compounds. Directing group strategies for selective dearomatization of unactivated aromatic π-systems have remained elusive. Now a homogeneous ruthenium catalyst, aided by a removable directing group, enables the site-selective hydrogenation of less reactive arene moieties in polyaryl compounds.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.