YOLO11‐RLN:一种用于森林火灾探测的空中无人机算法

IF 4.8 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Li Gao, Gaohua Chen
{"title":"YOLO11‐RLN:一种用于森林火灾探测的空中无人机算法","authors":"Li Gao,&nbsp;Gaohua Chen","doi":"10.1111/nyas.70017","DOIUrl":null,"url":null,"abstract":"<p>To address the limitations of existing forest fire detection models, including suboptimal unmanned aerial vehicle adaptability, low detection accuracy, and high false detection rates, we propose a new a UAV-oriented forest fire detection algorithm: YOLO11 with RepVGG, long fire-line texture fusion attention, and nano optimization, Our approach introduces several key improvements: RepVGG replaces the YOLO11 backbone to enhance feature extraction and detection accuracy; a novel long fire-line texture fusion (LTF) module is designed to improve fire feature perception in complex forest environments; the WIoU loss function is integrated to enhance small fire detection and accelerate convergence; and YOLOv8-nano parameterization is employed to reduce model complexity and mitigate overfitting. Experimental results demonstrate that YOLO11-RLN outperforms YOLO11, achieving 7.338%, 5.392%, 7.862%, and 7.019% improvements in precision, recall, mAP50, and mAP50-75, respectively. Statistical significance analysis confirms the robustness of these improvements.</p>","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"1551 1","pages":"312-324"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YOLO11-RLN: An aerial UAV algorithm for forest fire detection\",\"authors\":\"Li Gao,&nbsp;Gaohua Chen\",\"doi\":\"10.1111/nyas.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To address the limitations of existing forest fire detection models, including suboptimal unmanned aerial vehicle adaptability, low detection accuracy, and high false detection rates, we propose a new a UAV-oriented forest fire detection algorithm: YOLO11 with RepVGG, long fire-line texture fusion attention, and nano optimization, Our approach introduces several key improvements: RepVGG replaces the YOLO11 backbone to enhance feature extraction and detection accuracy; a novel long fire-line texture fusion (LTF) module is designed to improve fire feature perception in complex forest environments; the WIoU loss function is integrated to enhance small fire detection and accelerate convergence; and YOLOv8-nano parameterization is employed to reduce model complexity and mitigate overfitting. Experimental results demonstrate that YOLO11-RLN outperforms YOLO11, achieving 7.338%, 5.392%, 7.862%, and 7.019% improvements in precision, recall, mAP50, and mAP50-75, respectively. Statistical significance analysis confirms the robustness of these improvements.</p>\",\"PeriodicalId\":8250,\"journal\":{\"name\":\"Annals of the New York Academy of Sciences\",\"volume\":\"1551 1\",\"pages\":\"312-324\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the New York Academy of Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/nyas.70017\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/nyas.70017","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

针对现有森林火灾检测模型存在的无人机适应性不佳、检测精度低、误检率高等缺陷,提出了一种基于无人机的森林火灾检测算法:基于RepVGG、长火线纹理融合关注和纳米优化的YOLO11森林火灾检测算法。该算法引入了几个关键改进:RepVGG取代了YOLO11主干,提高了特征提取和检测精度;设计了一种新的长火线纹理融合(LTF)模块,以提高复杂森林环境下的火灾特征感知能力;集成WIoU损失函数,增强小火灾探测,加速收敛;YOLOv8‐nano参数化用于降低模型复杂性和缓解过拟合。实验结果表明,YOLO11‐RLN优于YOLO11,在查全率、查全率、mAP50和mAP50‐75方面分别提高了7.338%、5.392%、7.862%和7.019%。统计显著性分析证实了这些改进的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

YOLO11-RLN: An aerial UAV algorithm for forest fire detection

YOLO11-RLN: An aerial UAV algorithm for forest fire detection

YOLO11-RLN: An aerial UAV algorithm for forest fire detection

YOLO11-RLN: An aerial UAV algorithm for forest fire detection

YOLO11-RLN: An aerial UAV algorithm for forest fire detection

To address the limitations of existing forest fire detection models, including suboptimal unmanned aerial vehicle adaptability, low detection accuracy, and high false detection rates, we propose a new a UAV-oriented forest fire detection algorithm: YOLO11 with RepVGG, long fire-line texture fusion attention, and nano optimization, Our approach introduces several key improvements: RepVGG replaces the YOLO11 backbone to enhance feature extraction and detection accuracy; a novel long fire-line texture fusion (LTF) module is designed to improve fire feature perception in complex forest environments; the WIoU loss function is integrated to enhance small fire detection and accelerate convergence; and YOLOv8-nano parameterization is employed to reduce model complexity and mitigate overfitting. Experimental results demonstrate that YOLO11-RLN outperforms YOLO11, achieving 7.338%, 5.392%, 7.862%, and 7.019% improvements in precision, recall, mAP50, and mAP50-75, respectively. Statistical significance analysis confirms the robustness of these improvements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of the New York Academy of Sciences
Annals of the New York Academy of Sciences 综合性期刊-综合性期刊
CiteScore
11.00
自引率
1.90%
发文量
193
审稿时长
2-4 weeks
期刊介绍: Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信