Nancy M. Amato, Seth Hutchinson, Animesh Garg, Aude Billard, Daniela Rus, Russ Tedrake, Frank Park, Ken Goldberg
{"title":"“数据将解决机器人和自动化问题:对还是错?”:一场辩论","authors":"Nancy M. Amato, Seth Hutchinson, Animesh Garg, Aude Billard, Daniela Rus, Russ Tedrake, Frank Park, Ken Goldberg","doi":"10.1126/scirobotics.aea7897","DOIUrl":null,"url":null,"abstract":"<div >Leading researchers debate the long-term influence of model-free methods that use large sets of demonstration data to train numerical generative models to control robots.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 105","pages":""},"PeriodicalIF":27.5000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scirobotics.aea7897","citationCount":"0","resultStr":"{\"title\":\"“Data will solve robotics and automation: True or false?”: A debate\",\"authors\":\"Nancy M. Amato, Seth Hutchinson, Animesh Garg, Aude Billard, Daniela Rus, Russ Tedrake, Frank Park, Ken Goldberg\",\"doi\":\"10.1126/scirobotics.aea7897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Leading researchers debate the long-term influence of model-free methods that use large sets of demonstration data to train numerical generative models to control robots.</div>\",\"PeriodicalId\":56029,\"journal\":{\"name\":\"Science Robotics\",\"volume\":\"10 105\",\"pages\":\"\"},\"PeriodicalIF\":27.5000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/scirobotics.aea7897\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scirobotics.aea7897\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.aea7897","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
“Data will solve robotics and automation: True or false?”: A debate
Leading researchers debate the long-term influence of model-free methods that use large sets of demonstration data to train numerical generative models to control robots.
期刊介绍:
Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals.
Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.