{"title":"用单原子Fe-N4位回收铅锌渣制三碘化铅甲基铵用于压催化析氢","authors":"Fangyan Liu, Mengye Wang, Jiawen Liu, Feng Gao, Jiahui Lin, Jiaqing He, Feng Zhu, Chuan Liu, Zhang Lin","doi":"10.1002/cey2.70055","DOIUrl":null,"url":null,"abstract":"<p>Lead (Pb)–zinc (Zn) slags contain large amounts of Pb, causing irreversible damage to the environment. Therefore, developing an effective strategy to extract Pb from Pb–Zn slags and convert them into a renewable high-value catalyst not only solves the energy crisis but also reduces environmental pollution. Herein, we present a viable strategy to recycle Pb and iron (Fe) from Pb–Zn slags for the fabrication of efficient methylammonium lead tri-iodide (r-MAPbI<sub>3</sub>) piezocatalysts with single-atom Fe–N<sub>4</sub> sites. Intriguingly, atomically dispersed Fe sites from Pb–Zn slags, which coordinated with N in the neighboring four CH<sub>3</sub>NH<sub>3</sub> to form the FeN<sub>4</sub> configuration, were detected in the as-obtained r-MAPbI<sub>3</sub> by synchrotron X-ray absorption spectroscopy. The introduction of Fe single atoms amplified the polarization of MAPbI<sub>3</sub> and upshifted the d-band center of MAPbI<sub>3</sub>. This not only enhanced the piezoelectric response of MAPbI<sub>3</sub> but also promoted the proton transfer during the hydrogen evolution process. Due to the decoration of Fe single atoms, r-MAPbI<sub>3</sub> showed a pronounced H<sub>2</sub> yield of 322.4 μmol g<sup>−1</sup> h<sup>−1</sup>, which was 2.52 times that of MAPbI<sub>3</sub> synthesized using commercially available reagents. This simple yet robust strategy to manufacture MAPbI<sub>3</sub> piezocatalysts paves a novel way to the large-scale and value-added consumption of Pb-containing waste residues.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 8","pages":""},"PeriodicalIF":24.2000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70055","citationCount":"0","resultStr":"{\"title\":\"Recovery of Lead-Zinc Slags to Methyl-Ammonium Lead Tri-Iodide With Single-Atom Fe–N4 Sites for Piezocatalytic Hydrogen Evolution\",\"authors\":\"Fangyan Liu, Mengye Wang, Jiawen Liu, Feng Gao, Jiahui Lin, Jiaqing He, Feng Zhu, Chuan Liu, Zhang Lin\",\"doi\":\"10.1002/cey2.70055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lead (Pb)–zinc (Zn) slags contain large amounts of Pb, causing irreversible damage to the environment. Therefore, developing an effective strategy to extract Pb from Pb–Zn slags and convert them into a renewable high-value catalyst not only solves the energy crisis but also reduces environmental pollution. Herein, we present a viable strategy to recycle Pb and iron (Fe) from Pb–Zn slags for the fabrication of efficient methylammonium lead tri-iodide (r-MAPbI<sub>3</sub>) piezocatalysts with single-atom Fe–N<sub>4</sub> sites. Intriguingly, atomically dispersed Fe sites from Pb–Zn slags, which coordinated with N in the neighboring four CH<sub>3</sub>NH<sub>3</sub> to form the FeN<sub>4</sub> configuration, were detected in the as-obtained r-MAPbI<sub>3</sub> by synchrotron X-ray absorption spectroscopy. The introduction of Fe single atoms amplified the polarization of MAPbI<sub>3</sub> and upshifted the d-band center of MAPbI<sub>3</sub>. This not only enhanced the piezoelectric response of MAPbI<sub>3</sub> but also promoted the proton transfer during the hydrogen evolution process. Due to the decoration of Fe single atoms, r-MAPbI<sub>3</sub> showed a pronounced H<sub>2</sub> yield of 322.4 μmol g<sup>−1</sup> h<sup>−1</sup>, which was 2.52 times that of MAPbI<sub>3</sub> synthesized using commercially available reagents. This simple yet robust strategy to manufacture MAPbI<sub>3</sub> piezocatalysts paves a novel way to the large-scale and value-added consumption of Pb-containing waste residues.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"7 8\",\"pages\":\"\"},\"PeriodicalIF\":24.2000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70055\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.70055\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.70055","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Recovery of Lead-Zinc Slags to Methyl-Ammonium Lead Tri-Iodide With Single-Atom Fe–N4 Sites for Piezocatalytic Hydrogen Evolution
Lead (Pb)–zinc (Zn) slags contain large amounts of Pb, causing irreversible damage to the environment. Therefore, developing an effective strategy to extract Pb from Pb–Zn slags and convert them into a renewable high-value catalyst not only solves the energy crisis but also reduces environmental pollution. Herein, we present a viable strategy to recycle Pb and iron (Fe) from Pb–Zn slags for the fabrication of efficient methylammonium lead tri-iodide (r-MAPbI3) piezocatalysts with single-atom Fe–N4 sites. Intriguingly, atomically dispersed Fe sites from Pb–Zn slags, which coordinated with N in the neighboring four CH3NH3 to form the FeN4 configuration, were detected in the as-obtained r-MAPbI3 by synchrotron X-ray absorption spectroscopy. The introduction of Fe single atoms amplified the polarization of MAPbI3 and upshifted the d-band center of MAPbI3. This not only enhanced the piezoelectric response of MAPbI3 but also promoted the proton transfer during the hydrogen evolution process. Due to the decoration of Fe single atoms, r-MAPbI3 showed a pronounced H2 yield of 322.4 μmol g−1 h−1, which was 2.52 times that of MAPbI3 synthesized using commercially available reagents. This simple yet robust strategy to manufacture MAPbI3 piezocatalysts paves a novel way to the large-scale and value-added consumption of Pb-containing waste residues.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.