Ziyi Chen, Ying Yao, Feiyang Yang, Zhaolin Gou, Lipu Sun, Feng Wu, Jun Lu
{"title":"超紧凑非膨胀锂金属阳极仿生碳框架设计对锂成核的调控","authors":"Ziyi Chen, Ying Yao, Feiyang Yang, Zhaolin Gou, Lipu Sun, Feng Wu, Jun Lu","doi":"10.1002/cey2.70007","DOIUrl":null,"url":null,"abstract":"<p>Lithium metal is a compelling choice as an anode material for high-energy-density batteries, attributed to its elevated theoretical specific energy and low redox potential. Nevertheless, challenges arise due to its susceptibility to high-volume changes and the tendency for dendritic development during cycling, leading to restricted cycle life and diminished Coulombic efficiency (CE). Here, we innovatively engineered a kind of porous biocarbon to serve as the framework for a lithium metal anode, which boasts a heightened specific surface area and uniformly dispersed ZnO active sites, directly derived from metasequoia cambium. The porous structure efficiently mitigates local current density and alleviates the volume expansion of lithium. Also, incorporating the ZnO lithiophilic site notably reduces the nucleation overpotential to a mere 16 mV, facilitating the deposition of lithium in a compact form. As a result, this innovative material ensures an impressive CE of 98.5% for lithium plating/stripping over 500 cycles, a remarkable cycle life exceeding 1200 h in a Li symmetrical cell, and more than 82% capacity retention ratio after an astonishing 690 cycles in full cells. In all, such a rationally designed Li composite anode effectively mitigates volume change, enhances lithophilicity, and reduces local current density, thereby inhibiting dendrite formation. The preparation of a high-performance lithium anode frame proves the feasibility of using biocarbon in a lithium anode frame.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 8","pages":""},"PeriodicalIF":24.2000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70007","citationCount":"0","resultStr":"{\"title\":\"Regulation of Lithium Nucleation by Designing a Biomimetic Carbon Frame for Super Compact and Non-Expanding Lithium Metal Anode\",\"authors\":\"Ziyi Chen, Ying Yao, Feiyang Yang, Zhaolin Gou, Lipu Sun, Feng Wu, Jun Lu\",\"doi\":\"10.1002/cey2.70007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lithium metal is a compelling choice as an anode material for high-energy-density batteries, attributed to its elevated theoretical specific energy and low redox potential. Nevertheless, challenges arise due to its susceptibility to high-volume changes and the tendency for dendritic development during cycling, leading to restricted cycle life and diminished Coulombic efficiency (CE). Here, we innovatively engineered a kind of porous biocarbon to serve as the framework for a lithium metal anode, which boasts a heightened specific surface area and uniformly dispersed ZnO active sites, directly derived from metasequoia cambium. The porous structure efficiently mitigates local current density and alleviates the volume expansion of lithium. Also, incorporating the ZnO lithiophilic site notably reduces the nucleation overpotential to a mere 16 mV, facilitating the deposition of lithium in a compact form. As a result, this innovative material ensures an impressive CE of 98.5% for lithium plating/stripping over 500 cycles, a remarkable cycle life exceeding 1200 h in a Li symmetrical cell, and more than 82% capacity retention ratio after an astonishing 690 cycles in full cells. In all, such a rationally designed Li composite anode effectively mitigates volume change, enhances lithophilicity, and reduces local current density, thereby inhibiting dendrite formation. The preparation of a high-performance lithium anode frame proves the feasibility of using biocarbon in a lithium anode frame.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"7 8\",\"pages\":\"\"},\"PeriodicalIF\":24.2000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.70007\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.70007","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Regulation of Lithium Nucleation by Designing a Biomimetic Carbon Frame for Super Compact and Non-Expanding Lithium Metal Anode
Lithium metal is a compelling choice as an anode material for high-energy-density batteries, attributed to its elevated theoretical specific energy and low redox potential. Nevertheless, challenges arise due to its susceptibility to high-volume changes and the tendency for dendritic development during cycling, leading to restricted cycle life and diminished Coulombic efficiency (CE). Here, we innovatively engineered a kind of porous biocarbon to serve as the framework for a lithium metal anode, which boasts a heightened specific surface area and uniformly dispersed ZnO active sites, directly derived from metasequoia cambium. The porous structure efficiently mitigates local current density and alleviates the volume expansion of lithium. Also, incorporating the ZnO lithiophilic site notably reduces the nucleation overpotential to a mere 16 mV, facilitating the deposition of lithium in a compact form. As a result, this innovative material ensures an impressive CE of 98.5% for lithium plating/stripping over 500 cycles, a remarkable cycle life exceeding 1200 h in a Li symmetrical cell, and more than 82% capacity retention ratio after an astonishing 690 cycles in full cells. In all, such a rationally designed Li composite anode effectively mitigates volume change, enhances lithophilicity, and reduces local current density, thereby inhibiting dendrite formation. The preparation of a high-performance lithium anode frame proves the feasibility of using biocarbon in a lithium anode frame.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.