Pavel E. Musienko, Oleg V. Gorskii, Tatiana G. Deliagina, Pavel V. Zelenin
{"title":"基于神经元间活动分析的脊髓运动网络的功能组织","authors":"Pavel E. Musienko, Oleg V. Gorskii, Tatiana G. Deliagina, Pavel V. Zelenin","doi":"10.1111/ejn.70238","DOIUrl":null,"url":null,"abstract":"<p>Locomotion is a vital motor function for any living being. In vertebrates, a basic locomotor pattern is controlled by the spinal locomotor network (SLN). Although SLN has been extensively studied, due to technical difficulties, most data were obtained during fictive locomotion, and data about the activity of spinal neurons during locomotion with intact sensory feedback from limbs are extremely limited. Here, we overcame the technical problems and recorded the activity of putative spinal interneurons from spinal segments L4–L6 during treadmill forward locomotion evoked by stimulation of the mesencephalic locomotor region in the decerebrate cat. We found that neurons were activated and inactivated preferably within one of the four phase ranges presumably related to preparation for the limb lift-off, the limb lift-off, transition from the limb flexion to limb extension during swing, and the limb touch-down. We analyzed the activity phases of recorded interneurons by using a new method that took into account the previously ignored information about the stability of neuronal modulation in the sequential locomotor cycles. We suggested that neurons with stable modulation (i.e., small dispersion of their activity phase in sequential cycles) represent the core of SLN. Our analysis revealed groups of neurons active approximately out of phase and presumably contributing to the control of vertical (VC) and horizontal (HC) components of the step. We found that most VC- and HC-related neurons were located in the intermediate and dorsal/ventral parts of the grey matter, respectively. Our experimental data can be used as a benchmark for computational models of locomotor neuronal networks.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"62 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejn.70238","citationCount":"0","resultStr":"{\"title\":\"Functional Organization of the Spinal Locomotor Network Based on Analysis of Interneuronal Activity\",\"authors\":\"Pavel E. Musienko, Oleg V. Gorskii, Tatiana G. Deliagina, Pavel V. Zelenin\",\"doi\":\"10.1111/ejn.70238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Locomotion is a vital motor function for any living being. In vertebrates, a basic locomotor pattern is controlled by the spinal locomotor network (SLN). Although SLN has been extensively studied, due to technical difficulties, most data were obtained during fictive locomotion, and data about the activity of spinal neurons during locomotion with intact sensory feedback from limbs are extremely limited. Here, we overcame the technical problems and recorded the activity of putative spinal interneurons from spinal segments L4–L6 during treadmill forward locomotion evoked by stimulation of the mesencephalic locomotor region in the decerebrate cat. We found that neurons were activated and inactivated preferably within one of the four phase ranges presumably related to preparation for the limb lift-off, the limb lift-off, transition from the limb flexion to limb extension during swing, and the limb touch-down. We analyzed the activity phases of recorded interneurons by using a new method that took into account the previously ignored information about the stability of neuronal modulation in the sequential locomotor cycles. We suggested that neurons with stable modulation (i.e., small dispersion of their activity phase in sequential cycles) represent the core of SLN. Our analysis revealed groups of neurons active approximately out of phase and presumably contributing to the control of vertical (VC) and horizontal (HC) components of the step. We found that most VC- and HC-related neurons were located in the intermediate and dorsal/ventral parts of the grey matter, respectively. Our experimental data can be used as a benchmark for computational models of locomotor neuronal networks.</p>\",\"PeriodicalId\":11993,\"journal\":{\"name\":\"European Journal of Neuroscience\",\"volume\":\"62 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejn.70238\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70238\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70238","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Functional Organization of the Spinal Locomotor Network Based on Analysis of Interneuronal Activity
Locomotion is a vital motor function for any living being. In vertebrates, a basic locomotor pattern is controlled by the spinal locomotor network (SLN). Although SLN has been extensively studied, due to technical difficulties, most data were obtained during fictive locomotion, and data about the activity of spinal neurons during locomotion with intact sensory feedback from limbs are extremely limited. Here, we overcame the technical problems and recorded the activity of putative spinal interneurons from spinal segments L4–L6 during treadmill forward locomotion evoked by stimulation of the mesencephalic locomotor region in the decerebrate cat. We found that neurons were activated and inactivated preferably within one of the four phase ranges presumably related to preparation for the limb lift-off, the limb lift-off, transition from the limb flexion to limb extension during swing, and the limb touch-down. We analyzed the activity phases of recorded interneurons by using a new method that took into account the previously ignored information about the stability of neuronal modulation in the sequential locomotor cycles. We suggested that neurons with stable modulation (i.e., small dispersion of their activity phase in sequential cycles) represent the core of SLN. Our analysis revealed groups of neurons active approximately out of phase and presumably contributing to the control of vertical (VC) and horizontal (HC) components of the step. We found that most VC- and HC-related neurons were located in the intermediate and dorsal/ventral parts of the grey matter, respectively. Our experimental data can be used as a benchmark for computational models of locomotor neuronal networks.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.