Shuyang Peng, Di Liu, Zhiqin Ying, Keyu An, Chunfa Liu, Weng Fai Ip, Kin Ho Lo, Hui Pan
{"title":"具有高光电流密度的桥式层使能硅基光阳极,用于高效稳定的水分解","authors":"Shuyang Peng, Di Liu, Zhiqin Ying, Keyu An, Chunfa Liu, Weng Fai Ip, Kin Ho Lo, Hui Pan","doi":"10.1002/cey2.70052","DOIUrl":null,"url":null,"abstract":"<p>Photoelectrochemical (PEC) water splitting holds significant promise for sustainable energy harvesting that enables efficient conversion of solar energy into green hydrogen. Nevertheless, achievement of high performance is often limited by charge carrier recombination, resulting in unsatisfactory saturation current densities. To address this challenge, we present a novel strategy for achieving ultrahigh current density by incorporating a bridge layer between the Si substrate and the NiOOH cocatalyst in this paper. The optimal photoanode (TCO/n–p–Si/TCO/Ni) shows a remarkably low onset potential of 0.92 V vs. a reversible hydrogen electrode and a high saturation current density of 39.6 mA·cm<sup>−2</sup>, which is about 92.7% of the theoretical maximum (42.7 mA·cm<sup>−2</sup>). In addition, the photoanode demonstrates stable operation for 60 h. Our systematic characterizations and calculations demonstrate that the bridge layer facilitates charge transfer, enhances catalytic performance, and provides corrosion protection to the underlying substrate. Notably, the integration of this photoanode into a PEC device for overall water splitting leads to a reduction of the onset potential. These findings provide a viable pathway for fabricating high-performance industrial photoelectrodes by integrating a substrate and a cocatalyst via a transparent and conductive bridge layer.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"7 8","pages":""},"PeriodicalIF":24.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70052","citationCount":"0","resultStr":"{\"title\":\"Bridge Layer–Enabled Silicon-Based Photoanode With High Photocurrent Density for Efficient and Stable Water Splitting\",\"authors\":\"Shuyang Peng, Di Liu, Zhiqin Ying, Keyu An, Chunfa Liu, Weng Fai Ip, Kin Ho Lo, Hui Pan\",\"doi\":\"10.1002/cey2.70052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photoelectrochemical (PEC) water splitting holds significant promise for sustainable energy harvesting that enables efficient conversion of solar energy into green hydrogen. Nevertheless, achievement of high performance is often limited by charge carrier recombination, resulting in unsatisfactory saturation current densities. To address this challenge, we present a novel strategy for achieving ultrahigh current density by incorporating a bridge layer between the Si substrate and the NiOOH cocatalyst in this paper. The optimal photoanode (TCO/n–p–Si/TCO/Ni) shows a remarkably low onset potential of 0.92 V vs. a reversible hydrogen electrode and a high saturation current density of 39.6 mA·cm<sup>−2</sup>, which is about 92.7% of the theoretical maximum (42.7 mA·cm<sup>−2</sup>). In addition, the photoanode demonstrates stable operation for 60 h. Our systematic characterizations and calculations demonstrate that the bridge layer facilitates charge transfer, enhances catalytic performance, and provides corrosion protection to the underlying substrate. Notably, the integration of this photoanode into a PEC device for overall water splitting leads to a reduction of the onset potential. These findings provide a viable pathway for fabricating high-performance industrial photoelectrodes by integrating a substrate and a cocatalyst via a transparent and conductive bridge layer.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"7 8\",\"pages\":\"\"},\"PeriodicalIF\":24.2000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.70052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.70052\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.70052","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Bridge Layer–Enabled Silicon-Based Photoanode With High Photocurrent Density for Efficient and Stable Water Splitting
Photoelectrochemical (PEC) water splitting holds significant promise for sustainable energy harvesting that enables efficient conversion of solar energy into green hydrogen. Nevertheless, achievement of high performance is often limited by charge carrier recombination, resulting in unsatisfactory saturation current densities. To address this challenge, we present a novel strategy for achieving ultrahigh current density by incorporating a bridge layer between the Si substrate and the NiOOH cocatalyst in this paper. The optimal photoanode (TCO/n–p–Si/TCO/Ni) shows a remarkably low onset potential of 0.92 V vs. a reversible hydrogen electrode and a high saturation current density of 39.6 mA·cm−2, which is about 92.7% of the theoretical maximum (42.7 mA·cm−2). In addition, the photoanode demonstrates stable operation for 60 h. Our systematic characterizations and calculations demonstrate that the bridge layer facilitates charge transfer, enhances catalytic performance, and provides corrosion protection to the underlying substrate. Notably, the integration of this photoanode into a PEC device for overall water splitting leads to a reduction of the onset potential. These findings provide a viable pathway for fabricating high-performance industrial photoelectrodes by integrating a substrate and a cocatalyst via a transparent and conductive bridge layer.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.