{"title":"还原氧化石墨烯/TiO2/金纳米棒复合材料完全降解废水中聚苯乙烯微塑料的合理设计","authors":"Varsha UshaVipinachandran, Naveenkumar K, Kabir Hussain Badagoppam Haroon, Indhumathi Ashokan, Arup Sinha, Pradip Maity, Susanta Kumar Bhunia","doi":"10.1002/adsu.202500096","DOIUrl":null,"url":null,"abstract":"<p>Our planet is being devoured by plastic consumption every day. Water, soil, and air are deliberately polluted by the ingredients of these nondegradable plastics. Extensive usage of plastic has serious consequences in the environment, wildlife, and human health. A comprehensive approach to eradicate plastics from the planet is therefore imperative. Herein, a ternary nanocomposite subsumed of reduced graphene oxide (rGO), titanium dioxide (TiO<sub>2</sub>), and gold nanorods (AuNRs) is synthesized and effectively deployed to remove plastics from water as well as degradation of polymer film by both chemically and photocatalytically. The hydrothermally prepared nanocomposite completely removes polystyrene molecules from water, and 1.2 mg of plastic degradation is observed during the photolysis. Conversely, chemical degradation pathway induces the weight loss of 10.7 mg. Both Plasmon-induced interfacial charge transfer transition (PICTT) and Plasmon-induced hot electron transfer (PHET) assist the formation of reactive oxygen species (ROS) that collectively degrades the polymer strands. The spectrochemical and microscopic studies validate the degradation studies with cautious conclusions.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 8","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Design of Reduced Graphene Oxide/TiO2/Gold Nanorod Nanocomposite for Complete Degradation of Polystyrene Microplastics in Wastewater\",\"authors\":\"Varsha UshaVipinachandran, Naveenkumar K, Kabir Hussain Badagoppam Haroon, Indhumathi Ashokan, Arup Sinha, Pradip Maity, Susanta Kumar Bhunia\",\"doi\":\"10.1002/adsu.202500096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Our planet is being devoured by plastic consumption every day. Water, soil, and air are deliberately polluted by the ingredients of these nondegradable plastics. Extensive usage of plastic has serious consequences in the environment, wildlife, and human health. A comprehensive approach to eradicate plastics from the planet is therefore imperative. Herein, a ternary nanocomposite subsumed of reduced graphene oxide (rGO), titanium dioxide (TiO<sub>2</sub>), and gold nanorods (AuNRs) is synthesized and effectively deployed to remove plastics from water as well as degradation of polymer film by both chemically and photocatalytically. The hydrothermally prepared nanocomposite completely removes polystyrene molecules from water, and 1.2 mg of plastic degradation is observed during the photolysis. Conversely, chemical degradation pathway induces the weight loss of 10.7 mg. Both Plasmon-induced interfacial charge transfer transition (PICTT) and Plasmon-induced hot electron transfer (PHET) assist the formation of reactive oxygen species (ROS) that collectively degrades the polymer strands. The spectrochemical and microscopic studies validate the degradation studies with cautious conclusions.</p>\",\"PeriodicalId\":7294,\"journal\":{\"name\":\"Advanced Sustainable Systems\",\"volume\":\"9 8\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sustainable Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adsu.202500096\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adsu.202500096","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Rational Design of Reduced Graphene Oxide/TiO2/Gold Nanorod Nanocomposite for Complete Degradation of Polystyrene Microplastics in Wastewater
Our planet is being devoured by plastic consumption every day. Water, soil, and air are deliberately polluted by the ingredients of these nondegradable plastics. Extensive usage of plastic has serious consequences in the environment, wildlife, and human health. A comprehensive approach to eradicate plastics from the planet is therefore imperative. Herein, a ternary nanocomposite subsumed of reduced graphene oxide (rGO), titanium dioxide (TiO2), and gold nanorods (AuNRs) is synthesized and effectively deployed to remove plastics from water as well as degradation of polymer film by both chemically and photocatalytically. The hydrothermally prepared nanocomposite completely removes polystyrene molecules from water, and 1.2 mg of plastic degradation is observed during the photolysis. Conversely, chemical degradation pathway induces the weight loss of 10.7 mg. Both Plasmon-induced interfacial charge transfer transition (PICTT) and Plasmon-induced hot electron transfer (PHET) assist the formation of reactive oxygen species (ROS) that collectively degrades the polymer strands. The spectrochemical and microscopic studies validate the degradation studies with cautious conclusions.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.