建立了高强度管材热影响区金属组织形成模型

IF 0.8 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
M. R. Khismatullin, L. A. Efimenko, A. A. Ramus
{"title":"建立了高强度管材热影响区金属组织形成模型","authors":"M. R. Khismatullin,&nbsp;L. A. Efimenko,&nbsp;A. A. Ramus","doi":"10.1007/s11015-025-01952-1","DOIUrl":null,"url":null,"abstract":"<div><p>The article presents the results of developing a model that employs artificial neural networks (ANNs) to predict the structural-phase composition of the weld-affected zone (WAZ) metal in high-strength steels used to produce pipes of K60–K70 strength classes. The model consists of four sub-blocks that sequentially predict parameters determining the final structural-phase composition of the WAZ metal, such as average austenite grain diameter, critical temperatures of austenite decomposition, and both qualitative and quantitative structural-phase compositions. Each sub-block utilizes ANNs that have been developed, trained, and stored as functions in the MATLAB software environment.</p></div>","PeriodicalId":702,"journal":{"name":"Metallurgist","volume":"69 3","pages":"381 - 388"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a model of metal structure formation in the heat-affected zone of high-strength pipe steels\",\"authors\":\"M. R. Khismatullin,&nbsp;L. A. Efimenko,&nbsp;A. A. Ramus\",\"doi\":\"10.1007/s11015-025-01952-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The article presents the results of developing a model that employs artificial neural networks (ANNs) to predict the structural-phase composition of the weld-affected zone (WAZ) metal in high-strength steels used to produce pipes of K60–K70 strength classes. The model consists of four sub-blocks that sequentially predict parameters determining the final structural-phase composition of the WAZ metal, such as average austenite grain diameter, critical temperatures of austenite decomposition, and both qualitative and quantitative structural-phase compositions. Each sub-block utilizes ANNs that have been developed, trained, and stored as functions in the MATLAB software environment.</p></div>\",\"PeriodicalId\":702,\"journal\":{\"name\":\"Metallurgist\",\"volume\":\"69 3\",\"pages\":\"381 - 388\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgist\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11015-025-01952-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgist","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11015-025-01952-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用人工神经网络(ann)预测用于生产K60-K70强度等级管道的高强度钢焊缝影响区(WAZ)金属结构相组成的模型的开发结果。该模型由四个子块组成,依次预测决定WAZ金属最终结构相组成的参数,如平均奥氏体晶粒直径、奥氏体分解的临界温度以及定性和定量结构相组成。每个子块都利用已在MATLAB软件环境中作为函数开发、训练和存储的人工神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing a model of metal structure formation in the heat-affected zone of high-strength pipe steels

The article presents the results of developing a model that employs artificial neural networks (ANNs) to predict the structural-phase composition of the weld-affected zone (WAZ) metal in high-strength steels used to produce pipes of K60–K70 strength classes. The model consists of four sub-blocks that sequentially predict parameters determining the final structural-phase composition of the WAZ metal, such as average austenite grain diameter, critical temperatures of austenite decomposition, and both qualitative and quantitative structural-phase compositions. Each sub-block utilizes ANNs that have been developed, trained, and stored as functions in the MATLAB software environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metallurgist
Metallurgist 工程技术-冶金工程
CiteScore
1.50
自引率
44.40%
发文量
151
审稿时长
4-8 weeks
期刊介绍: Metallurgist is the leading Russian journal in metallurgy. Publication started in 1956. Basic topics covered include: State of the art and development of enterprises in ferrous and nonferrous metallurgy and mining; Metallurgy of ferrous, nonferrous, rare, and precious metals; Metallurgical equipment; Automation and control; Protection of labor; Protection of the environment; Resources and energy saving; Quality and certification; History of metallurgy; Inventions (patents).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信