蛋壳衍生SrFe/CaO催化剂微波辅助大豆油酯交换反应研究

IF 3 3区 工程技术 Q3 ENERGY & FUELS
G. Chavez-Esquivel, J. M. Ortega-Hernández, G. G. García-Camacho, J. C. García-Martínez, J. A. Tavizón-Pozos
{"title":"蛋壳衍生SrFe/CaO催化剂微波辅助大豆油酯交换反应研究","authors":"G. Chavez-Esquivel,&nbsp;J. M. Ortega-Hernández,&nbsp;G. G. García-Camacho,&nbsp;J. C. García-Martínez,&nbsp;J. A. Tavizón-Pozos","doi":"10.1007/s12155-025-10886-0","DOIUrl":null,"url":null,"abstract":"<div><p>This work proposes the use of a novel non-magnetic SrFe/CaO catalyst derived from waste materials, which have not been reported for biodiesel production under microwave conditions. Also, it evaluates the interaction of multiple reaction factors through statistical modeling. While CaO has been widely used in biodiesel production, its leaching and limited stability have motivated the search for improved materials. Hence, the Sr/CaO, Fe/CaO, and SrFe/CaO catalysts were synthesized by incipient impregnation of the calcined eggshells with Sr and Fe salts, followed by calcination at 800 °C. N<sub>2</sub>-physisorption, XRD, and Hammett indicators were used as characterization techniques of the catalysts, and the reaction was performed in a batch reactor under microwave irradiation at 60 °C. The SrFe/CaO catalyst exhibited the highest basicity (60 mmol g<sup>−1</sup>), possibly due to the formation of the α-Fe<sub>2</sub>O<sub>3</sub> phase, and achieved a biodiesel yield of 92%. Further optimization using the Box-Behnken response surface methodology revealed that reaction time and the methanol-to-oil ratio significantly affected the yield, while microwave power had a minor influence. The optimal conditions for this system were 56 min, 150 W, and a methanol-to-oil ratio of 10:1, which resulted in a maximum biodiesel yield of 98.87%. Despite the promising activity, catalyst stability decreased over reuse cycles, likely due to CaO leaching.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12155-025-10886-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Microwave-Assisted Transesterification of Soybean Oil Using Eggshell-Derived SrFe/CaO Catalysts\",\"authors\":\"G. Chavez-Esquivel,&nbsp;J. M. Ortega-Hernández,&nbsp;G. G. García-Camacho,&nbsp;J. C. García-Martínez,&nbsp;J. A. Tavizón-Pozos\",\"doi\":\"10.1007/s12155-025-10886-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work proposes the use of a novel non-magnetic SrFe/CaO catalyst derived from waste materials, which have not been reported for biodiesel production under microwave conditions. Also, it evaluates the interaction of multiple reaction factors through statistical modeling. While CaO has been widely used in biodiesel production, its leaching and limited stability have motivated the search for improved materials. Hence, the Sr/CaO, Fe/CaO, and SrFe/CaO catalysts were synthesized by incipient impregnation of the calcined eggshells with Sr and Fe salts, followed by calcination at 800 °C. N<sub>2</sub>-physisorption, XRD, and Hammett indicators were used as characterization techniques of the catalysts, and the reaction was performed in a batch reactor under microwave irradiation at 60 °C. The SrFe/CaO catalyst exhibited the highest basicity (60 mmol g<sup>−1</sup>), possibly due to the formation of the α-Fe<sub>2</sub>O<sub>3</sub> phase, and achieved a biodiesel yield of 92%. Further optimization using the Box-Behnken response surface methodology revealed that reaction time and the methanol-to-oil ratio significantly affected the yield, while microwave power had a minor influence. The optimal conditions for this system were 56 min, 150 W, and a methanol-to-oil ratio of 10:1, which resulted in a maximum biodiesel yield of 98.87%. Despite the promising activity, catalyst stability decreased over reuse cycles, likely due to CaO leaching.</p></div>\",\"PeriodicalId\":487,\"journal\":{\"name\":\"BioEnergy Research\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12155-025-10886-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEnergy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12155-025-10886-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-025-10886-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一种新型的非磁性SrFe/CaO催化剂的使用,该催化剂来源于废物,尚未报道在微波条件下生产生物柴油。并通过统计建模对多个反应因素的相互作用进行评价。虽然CaO已广泛用于生物柴油生产,但其浸出性和有限的稳定性促使人们寻找改进的材料。因此,将煅烧后的蛋壳初始浸渍Sr和Fe盐,然后在800℃下煅烧,合成了Sr/CaO、Fe/CaO和SrFe/CaO催化剂。采用n2 -物理吸附、XRD和Hammett指标作为催化剂的表征技术,在60℃微波辐照下的间歇式反应器中进行反应。SrFe/CaO催化剂的碱度最高(60 mmol g−1),可能是由于α-Fe2O3相的形成,生物柴油的产率达到92%。利用Box-Behnken响应面法进一步优化发现,反应时间和醇油比对产率有显著影响,微波功率对产率的影响较小。该体系的最佳工艺条件为:56 min, 150 W,甲醇油比为10:1,生物柴油产率最高可达98.87%。尽管具有良好的活性,但催化剂的稳定性在重复使用周期中下降,可能是由于CaO浸出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microwave-Assisted Transesterification of Soybean Oil Using Eggshell-Derived SrFe/CaO Catalysts

This work proposes the use of a novel non-magnetic SrFe/CaO catalyst derived from waste materials, which have not been reported for biodiesel production under microwave conditions. Also, it evaluates the interaction of multiple reaction factors through statistical modeling. While CaO has been widely used in biodiesel production, its leaching and limited stability have motivated the search for improved materials. Hence, the Sr/CaO, Fe/CaO, and SrFe/CaO catalysts were synthesized by incipient impregnation of the calcined eggshells with Sr and Fe salts, followed by calcination at 800 °C. N2-physisorption, XRD, and Hammett indicators were used as characterization techniques of the catalysts, and the reaction was performed in a batch reactor under microwave irradiation at 60 °C. The SrFe/CaO catalyst exhibited the highest basicity (60 mmol g−1), possibly due to the formation of the α-Fe2O3 phase, and achieved a biodiesel yield of 92%. Further optimization using the Box-Behnken response surface methodology revealed that reaction time and the methanol-to-oil ratio significantly affected the yield, while microwave power had a minor influence. The optimal conditions for this system were 56 min, 150 W, and a methanol-to-oil ratio of 10:1, which resulted in a maximum biodiesel yield of 98.87%. Despite the promising activity, catalyst stability decreased over reuse cycles, likely due to CaO leaching.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioEnergy Research
BioEnergy Research ENERGY & FUELS-ENVIRONMENTAL SCIENCES
CiteScore
6.70
自引率
8.30%
发文量
174
审稿时长
3 months
期刊介绍: BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信