集成机器学习和热力学描述符增强镍基单晶高温合金蠕变寿命预测和合金设计

IF 4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jian Yao, Wanchan Yu, Juncheng Wang, Longfei Zhang, Feng Liu, Weifu Li, Liming Tan, Lan Huang, Yong Liu
{"title":"集成机器学习和热力学描述符增强镍基单晶高温合金蠕变寿命预测和合金设计","authors":"Jian Yao,&nbsp;Wanchan Yu,&nbsp;Juncheng Wang,&nbsp;Longfei Zhang,&nbsp;Feng Liu,&nbsp;Weifu Li,&nbsp;Liming Tan,&nbsp;Lan Huang,&nbsp;Yong Liu","doi":"10.1007/s12540-025-01906-x","DOIUrl":null,"url":null,"abstract":"<div><p>Ni-based single crystal superalloys play a vital role in critical areas such as aerospace and gas turbines due to their superior high-temperature strength. However, accurately predicting the creep rupture life of these alloys has been a challenge. In this study, an artificial neural network-based prediction model was developed to effectively improve the accuracy of creep life prediction for Ni-based single crystal superalloys by incorporating 15 new descriptors. The R<sup>2</sup> for the test set was 0.8595. Further, the SHAP value results guided the design of new low-cost, high-performance alloys, among which the new designed alloy (5.91 Cr, 6.21 Co, 1.62 Mo, 6.37 W, 5.64 Al, 7.22 Ta, 1.45 Re, 0.52 Ti and Ni balance, wt%) showed a higher creep life than the existing alloy CMSX-4, while having a Re content &lt; 1.5 wt%. The results not only provide new tools for superalloy design, but also confirm the practical value of machine learning in materials science.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"31 9","pages":"2730 - 2748"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Machine Learning and Thermodynamic Descriptors for Enhanced Ni-Based Single Crystal Superalloys Creep Life Prediction and Alloy Design\",\"authors\":\"Jian Yao,&nbsp;Wanchan Yu,&nbsp;Juncheng Wang,&nbsp;Longfei Zhang,&nbsp;Feng Liu,&nbsp;Weifu Li,&nbsp;Liming Tan,&nbsp;Lan Huang,&nbsp;Yong Liu\",\"doi\":\"10.1007/s12540-025-01906-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ni-based single crystal superalloys play a vital role in critical areas such as aerospace and gas turbines due to their superior high-temperature strength. However, accurately predicting the creep rupture life of these alloys has been a challenge. In this study, an artificial neural network-based prediction model was developed to effectively improve the accuracy of creep life prediction for Ni-based single crystal superalloys by incorporating 15 new descriptors. The R<sup>2</sup> for the test set was 0.8595. Further, the SHAP value results guided the design of new low-cost, high-performance alloys, among which the new designed alloy (5.91 Cr, 6.21 Co, 1.62 Mo, 6.37 W, 5.64 Al, 7.22 Ta, 1.45 Re, 0.52 Ti and Ni balance, wt%) showed a higher creep life than the existing alloy CMSX-4, while having a Re content &lt; 1.5 wt%. The results not only provide new tools for superalloy design, but also confirm the practical value of machine learning in materials science.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"31 9\",\"pages\":\"2730 - 2748\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12540-025-01906-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-025-01906-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

镍基单晶高温合金由于其优越的高温强度,在航空航天和燃气轮机等关键领域发挥着至关重要的作用。然而,准确预测这些合金的蠕变断裂寿命一直是一个挑战。为了有效提高镍基单晶高温合金蠕变寿命预测的精度,本研究建立了一种基于人工神经网络的预测模型,引入了15个新的描述符。检验集的R2为0.8595。此外,SHAP值结果指导了新型低成本高性能合金的设计,其中新设计的合金(5.91 Cr, 6.21 Co, 1.62 Mo, 6.37 W, 5.64 Al, 7.22 Ta, 1.45 Re, 0.52 Ti和Ni平衡,wt%)比现有合金CMSX-4具有更高的蠕变寿命,而Re含量为<; 1.5 wt%。这一结果不仅为高温合金设计提供了新的工具,也证实了机器学习在材料科学中的实用价值。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Machine Learning and Thermodynamic Descriptors for Enhanced Ni-Based Single Crystal Superalloys Creep Life Prediction and Alloy Design

Ni-based single crystal superalloys play a vital role in critical areas such as aerospace and gas turbines due to their superior high-temperature strength. However, accurately predicting the creep rupture life of these alloys has been a challenge. In this study, an artificial neural network-based prediction model was developed to effectively improve the accuracy of creep life prediction for Ni-based single crystal superalloys by incorporating 15 new descriptors. The R2 for the test set was 0.8595. Further, the SHAP value results guided the design of new low-cost, high-performance alloys, among which the new designed alloy (5.91 Cr, 6.21 Co, 1.62 Mo, 6.37 W, 5.64 Al, 7.22 Ta, 1.45 Re, 0.52 Ti and Ni balance, wt%) showed a higher creep life than the existing alloy CMSX-4, while having a Re content < 1.5 wt%. The results not only provide new tools for superalloy design, but also confirm the practical value of machine learning in materials science.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信