基于隐式正则化的在线鲁棒主成分分析

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Lakshmi Jayalal;Gokularam Muthukrishnan;Sheetal Kalyani
{"title":"基于隐式正则化的在线鲁棒主成分分析","authors":"Lakshmi Jayalal;Gokularam Muthukrishnan;Sheetal Kalyani","doi":"10.1109/LSP.2025.3599784","DOIUrl":null,"url":null,"abstract":"The performance of Online Robust Principal Component Analysis (OR-PCA) technique heavily depends on the optimum tuning of the explicit regularizers. This tuning is dataset-sensitive and often impractical to optimize in real-world scenarios. We aim to remove the dependency on these tuning parameters by using implicit regularization. To this end, we develop an approach that integrates implicit regularization properties of various gradient descent methods to estimate sparse outliers and low-dimensional representations in a streaming setting—a non-trivial extension of existing techniques. A key novelty lies in the design of a new parameterization for matrix estimation in OR-PCA. Our method incorporates three different versions of modified gradient descent that separate but naturally encourage sparsity and low-rank structures in the data. Experimental results on synthetic and real-world video datasets demonstrate that the proposed method, namely, Tuning-Free OR-PCA (TF-ORPCA), outperforms existing OR-PCA methods. TF-ORPCA makes it more scalable for large datasets.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3360-3364"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning-Free Online Robust Principal Component Analysis Through Implicit Regularization\",\"authors\":\"Lakshmi Jayalal;Gokularam Muthukrishnan;Sheetal Kalyani\",\"doi\":\"10.1109/LSP.2025.3599784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of Online Robust Principal Component Analysis (OR-PCA) technique heavily depends on the optimum tuning of the explicit regularizers. This tuning is dataset-sensitive and often impractical to optimize in real-world scenarios. We aim to remove the dependency on these tuning parameters by using implicit regularization. To this end, we develop an approach that integrates implicit regularization properties of various gradient descent methods to estimate sparse outliers and low-dimensional representations in a streaming setting—a non-trivial extension of existing techniques. A key novelty lies in the design of a new parameterization for matrix estimation in OR-PCA. Our method incorporates three different versions of modified gradient descent that separate but naturally encourage sparsity and low-rank structures in the data. Experimental results on synthetic and real-world video datasets demonstrate that the proposed method, namely, Tuning-Free OR-PCA (TF-ORPCA), outperforms existing OR-PCA methods. TF-ORPCA makes it more scalable for large datasets.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"3360-3364\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11127046/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11127046/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在线鲁棒主成分分析(OR-PCA)技术的性能在很大程度上取决于显式正则化器的优化调整。这种调优是对数据集敏感的,在实际场景中通常无法进行优化。我们的目标是通过使用隐式正则化来消除对这些调优参数的依赖。为此,我们开发了一种方法,该方法集成了各种梯度下降方法的隐式正则化特性,以估计流设置中的稀疏异常值和低维表示-这是对现有技术的非平凡扩展。一个关键的新颖之处在于在OR-PCA中设计了一种新的矩阵估计参数化。我们的方法结合了三种不同版本的改进梯度下降,它们分离但自然地鼓励数据中的稀疏性和低秩结构。在合成和真实视频数据集上的实验结果表明,本文提出的无调优OR-PCA (TF-ORPCA)方法优于现有的OR-PCA方法。TF-ORPCA使其在大型数据集上更具可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning-Free Online Robust Principal Component Analysis Through Implicit Regularization
The performance of Online Robust Principal Component Analysis (OR-PCA) technique heavily depends on the optimum tuning of the explicit regularizers. This tuning is dataset-sensitive and often impractical to optimize in real-world scenarios. We aim to remove the dependency on these tuning parameters by using implicit regularization. To this end, we develop an approach that integrates implicit regularization properties of various gradient descent methods to estimate sparse outliers and low-dimensional representations in a streaming setting—a non-trivial extension of existing techniques. A key novelty lies in the design of a new parameterization for matrix estimation in OR-PCA. Our method incorporates three different versions of modified gradient descent that separate but naturally encourage sparsity and low-rank structures in the data. Experimental results on synthetic and real-world video datasets demonstrate that the proposed method, namely, Tuning-Free OR-PCA (TF-ORPCA), outperforms existing OR-PCA methods. TF-ORPCA makes it more scalable for large datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信