面向纹理和遮挡的光场视差估计基准数据集TO-LF

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shubo Zhou;Yunlong Wang;Yingqian Wang;Fei Liu;Xue-qin Jiang
{"title":"面向纹理和遮挡的光场视差估计基准数据集TO-LF","authors":"Shubo Zhou;Yunlong Wang;Yingqian Wang;Fei Liu;Xue-qin Jiang","doi":"10.1109/LSP.2025.3598728","DOIUrl":null,"url":null,"abstract":"Accurate disparity estimation in light field (LF) imaging remains challenging due to the narrow baseline between adjacent sub-aperture images (SAIs) and the occlusion effect. Existing learning-based methods suffer from degraded performance in complex scenarios owing to the scarcity of high-quality and diverse training data. To address this limitation, we propose a Texture and Occlusion-oriented Light Field dataset (TO-LF) containing 78 carefully curated images. Unlike the widely used HCI 4D LF benchmark, TO-LF not only provides more training samples but also introduces a more challenging test set with complex occlusions and significant textureless regions. Furthermore, we present a viewpoint-selective sub-pixel cost volume construction method (VS-Sub), which extends disparity labels to the subpixel level for denser cost volumes, and employs dynamic dilated convolutions to differentiate between occluded and non-occluded viewpoints. Comprehensive experiments demonstrate that our framework achieves state-of-the-art (SOTA) performance in disparity estimation.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3315-3319"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TO-LF: A Texture and Occlusion-Oriented Benchmark Dataset for Light Field Disparity Estimation\",\"authors\":\"Shubo Zhou;Yunlong Wang;Yingqian Wang;Fei Liu;Xue-qin Jiang\",\"doi\":\"10.1109/LSP.2025.3598728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate disparity estimation in light field (LF) imaging remains challenging due to the narrow baseline between adjacent sub-aperture images (SAIs) and the occlusion effect. Existing learning-based methods suffer from degraded performance in complex scenarios owing to the scarcity of high-quality and diverse training data. To address this limitation, we propose a Texture and Occlusion-oriented Light Field dataset (TO-LF) containing 78 carefully curated images. Unlike the widely used HCI 4D LF benchmark, TO-LF not only provides more training samples but also introduces a more challenging test set with complex occlusions and significant textureless regions. Furthermore, we present a viewpoint-selective sub-pixel cost volume construction method (VS-Sub), which extends disparity labels to the subpixel level for denser cost volumes, and employs dynamic dilated convolutions to differentiate between occluded and non-occluded viewpoints. Comprehensive experiments demonstrate that our framework achieves state-of-the-art (SOTA) performance in disparity estimation.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"3315-3319\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11123728/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11123728/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于相邻子孔径图像(SAIs)之间的基线较窄以及遮挡效应,在光场成像(LF)中精确估计视差一直是一个挑战。由于缺乏高质量和多样化的训练数据,现有的基于学习的方法在复杂场景下的性能下降。为了解决这一限制,我们提出了一个面向纹理和遮挡的光场数据集(To - lf),其中包含78张精心策划的图像。与广泛使用的HCI 4D LF基准不同,TO-LF不仅提供了更多的训练样本,而且引入了更具挑战性的测试集,具有复杂的闭塞和显著的无纹理区域。此外,我们提出了一种视点选择性亚像素代价体构建方法(VS-Sub),该方法将视差标签扩展到亚像素级别,用于更密集的代价体,并使用动态扩展卷积来区分被遮挡和非遮挡的视点。综合实验表明,我们的框架在视差估计方面达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TO-LF: A Texture and Occlusion-Oriented Benchmark Dataset for Light Field Disparity Estimation
Accurate disparity estimation in light field (LF) imaging remains challenging due to the narrow baseline between adjacent sub-aperture images (SAIs) and the occlusion effect. Existing learning-based methods suffer from degraded performance in complex scenarios owing to the scarcity of high-quality and diverse training data. To address this limitation, we propose a Texture and Occlusion-oriented Light Field dataset (TO-LF) containing 78 carefully curated images. Unlike the widely used HCI 4D LF benchmark, TO-LF not only provides more training samples but also introduces a more challenging test set with complex occlusions and significant textureless regions. Furthermore, we present a viewpoint-selective sub-pixel cost volume construction method (VS-Sub), which extends disparity labels to the subpixel level for denser cost volumes, and employs dynamic dilated convolutions to differentiate between occluded and non-occluded viewpoints. Comprehensive experiments demonstrate that our framework achieves state-of-the-art (SOTA) performance in disparity estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信