无稀土磁体的分析最大能积(BH)max模型:核-壳纳米结构

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yang-Ki Hong;Seok Bae;Jihoon Park;Minyeong Choi;Won-Cheol Lee;Chang-Dong Yeo;Md Abdul Wahed;Kisuk Lee;Haein Yim-Choi;Woo-Young Lee
{"title":"无稀土磁体的分析最大能积(BH)max模型:核-壳纳米结构","authors":"Yang-Ki Hong;Seok Bae;Jihoon Park;Minyeong Choi;Won-Cheol Lee;Chang-Dong Yeo;Md Abdul Wahed;Kisuk Lee;Haein Yim-Choi;Woo-Young Lee","doi":"10.1109/TMAG.2025.3576933","DOIUrl":null,"url":null,"abstract":"This article presents an analytical model for the maximum energy product [<inline-formula> <tex-math>$(BH)_{\\max }$ </tex-math></inline-formula>] in core–shell structured magnetic exchange-coupled nanomagnets. The model was validated by comparing its results to the <inline-formula> <tex-math>$(BH)_{\\max }$ </tex-math></inline-formula> from core–shell magnets reported in the literature. This approach can serve as a universal model for designing core–shell magnets that achieve the desired <inline-formula> <tex-math>$(BH)_{\\max }$ </tex-math></inline-formula>. The <inline-formula> <tex-math>$(BH)_{\\max }$ </tex-math></inline-formula> was determined under two distinct nucleation field (<inline-formula> <tex-math>$H_{\\mathrm {N}}$ </tex-math></inline-formula>) conditions: <inline-formula> <tex-math>$H_{\\mathrm {N}} \\le M_{\\mathrm {r}}$ </tex-math></inline-formula>/2 and <inline-formula> <tex-math>$H_{\\mathrm {N}} \\ge M_{\\mathrm {r}}$ </tex-math></inline-formula>/2, where <inline-formula> <tex-math>$M_{\\mathrm {r}}$ </tex-math></inline-formula> is the remanent magnetization. In addition, two different values of magnetic hysteresis loop squareness (SQ <inline-formula> <tex-math>$= M_{\\mathrm {r}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>$M_{\\mathrm {S}}$ </tex-math></inline-formula>) were used: 1.0 and 0.7. The soft magnetic shell’s remanent magnetic flux density (<inline-formula> <tex-math>$B_{\\mathrm {r}}$ </tex-math></inline-formula>) ranged from 0.7 to 2.2 T, while the core diameter (<inline-formula> <tex-math>$D_{\\mathrm {h}}$ </tex-math></inline-formula>) varied between 50 and 250 nm in this <inline-formula> <tex-math>$(BH)_{\\max }$ </tex-math></inline-formula> model. The low-temperature phase (LTP) MnBi-core/soft-shell nanomagnet can achieve a <inline-formula> <tex-math>$(BH)_{\\max }$ </tex-math></inline-formula> of 40 MGOe at a <inline-formula> <tex-math>$B_{\\mathrm {r}}$ </tex-math></inline-formula> of 1.6 T, with a shell thickness (<inline-formula> <tex-math>$\\delta _{\\mathrm {S}}$ </tex-math></inline-formula>) of 40 nm, a <inline-formula> <tex-math>$D_{\\mathrm {h}}$ </tex-math></inline-formula> of 250 nm, and a volume fraction of the hard-core (<inline-formula> <tex-math>$f_{\\mathrm {h}}$ </tex-math></inline-formula>) of 0.43. The <inline-formula> <tex-math>$(BH)_{\\max }$ </tex-math></inline-formula> of the hexaferrite (SrFe12O19)/soft-shell (1.9 T) nanomagnet can be improved from 5.8 (single hexaferrite phase) to 20 MGOe. This approach achieves the desired <inline-formula> <tex-math>$(BH)_{\\max }$ </tex-math></inline-formula> of the rare-earth(RE)-free permanent magnet, thereby tackling issues related to RE mineral security and unstable supply chains.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 9","pages":"1-9"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Maximum Energy Product (BH)max Model for Rare-Earth-Free Magnets: Core–Shell Nanostructure\",\"authors\":\"Yang-Ki Hong;Seok Bae;Jihoon Park;Minyeong Choi;Won-Cheol Lee;Chang-Dong Yeo;Md Abdul Wahed;Kisuk Lee;Haein Yim-Choi;Woo-Young Lee\",\"doi\":\"10.1109/TMAG.2025.3576933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an analytical model for the maximum energy product [<inline-formula> <tex-math>$(BH)_{\\\\max }$ </tex-math></inline-formula>] in core–shell structured magnetic exchange-coupled nanomagnets. The model was validated by comparing its results to the <inline-formula> <tex-math>$(BH)_{\\\\max }$ </tex-math></inline-formula> from core–shell magnets reported in the literature. This approach can serve as a universal model for designing core–shell magnets that achieve the desired <inline-formula> <tex-math>$(BH)_{\\\\max }$ </tex-math></inline-formula>. The <inline-formula> <tex-math>$(BH)_{\\\\max }$ </tex-math></inline-formula> was determined under two distinct nucleation field (<inline-formula> <tex-math>$H_{\\\\mathrm {N}}$ </tex-math></inline-formula>) conditions: <inline-formula> <tex-math>$H_{\\\\mathrm {N}} \\\\le M_{\\\\mathrm {r}}$ </tex-math></inline-formula>/2 and <inline-formula> <tex-math>$H_{\\\\mathrm {N}} \\\\ge M_{\\\\mathrm {r}}$ </tex-math></inline-formula>/2, where <inline-formula> <tex-math>$M_{\\\\mathrm {r}}$ </tex-math></inline-formula> is the remanent magnetization. In addition, two different values of magnetic hysteresis loop squareness (SQ <inline-formula> <tex-math>$= M_{\\\\mathrm {r}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>$M_{\\\\mathrm {S}}$ </tex-math></inline-formula>) were used: 1.0 and 0.7. The soft magnetic shell’s remanent magnetic flux density (<inline-formula> <tex-math>$B_{\\\\mathrm {r}}$ </tex-math></inline-formula>) ranged from 0.7 to 2.2 T, while the core diameter (<inline-formula> <tex-math>$D_{\\\\mathrm {h}}$ </tex-math></inline-formula>) varied between 50 and 250 nm in this <inline-formula> <tex-math>$(BH)_{\\\\max }$ </tex-math></inline-formula> model. The low-temperature phase (LTP) MnBi-core/soft-shell nanomagnet can achieve a <inline-formula> <tex-math>$(BH)_{\\\\max }$ </tex-math></inline-formula> of 40 MGOe at a <inline-formula> <tex-math>$B_{\\\\mathrm {r}}$ </tex-math></inline-formula> of 1.6 T, with a shell thickness (<inline-formula> <tex-math>$\\\\delta _{\\\\mathrm {S}}$ </tex-math></inline-formula>) of 40 nm, a <inline-formula> <tex-math>$D_{\\\\mathrm {h}}$ </tex-math></inline-formula> of 250 nm, and a volume fraction of the hard-core (<inline-formula> <tex-math>$f_{\\\\mathrm {h}}$ </tex-math></inline-formula>) of 0.43. The <inline-formula> <tex-math>$(BH)_{\\\\max }$ </tex-math></inline-formula> of the hexaferrite (SrFe12O19)/soft-shell (1.9 T) nanomagnet can be improved from 5.8 (single hexaferrite phase) to 20 MGOe. This approach achieves the desired <inline-formula> <tex-math>$(BH)_{\\\\max }$ </tex-math></inline-formula> of the rare-earth(RE)-free permanent magnet, thereby tackling issues related to RE mineral security and unstable supply chains.\",\"PeriodicalId\":13405,\"journal\":{\"name\":\"IEEE Transactions on Magnetics\",\"volume\":\"61 9\",\"pages\":\"1-9\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Magnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11026035/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11026035/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了核壳结构磁交换耦合纳米磁体的最大能积的解析模型[$(BH)_{\max }$]。通过将其结果与文献中报道的核壳磁体$(BH)_{\max }$进行比较,验证了该模型。这种方法可以作为设计核壳磁铁的通用模型,以实现所需的$(BH)_{\max }$。$(BH)_{\max }$是在两种不同的成核场($H_{\mathrm {N}}$)条件下确定的:$H_{\mathrm {N}} \le M_{\mathrm {r}}$ /2和$H_{\mathrm {N}} \ge M_{\mathrm {r}}$ /2,其中$M_{\mathrm {r}}$为剩余磁化强度。此外,采用了两个不同的磁滞回线方位值(SQ $= M_{\mathrm {r}}$ / $M_{\mathrm {S}}$): 1.0和0.7。在$(BH)_{\max }$模型中,软磁壳的剩余磁通密度($B_{\mathrm {r}}$)在0.7 ~ 2.2 T之间,芯径($D_{\mathrm {h}}$)在50 ~ 250 nm之间变化。低温相(LTP) MnBi-core/软壳纳米磁体在$B_{\mathrm {r}}$为1.6 T时可实现$(BH)_{\max }$为40 MGOe,壳厚($\delta _{\mathrm {S}}$)为40 nm,壳厚($D_{\mathrm {h}}$)为250 nm,硬核体积分数($f_{\mathrm {h}}$)为0.43。六铁体(SrFe12O19)/软壳(1.9 T)纳米磁体的$(BH)_{\max }$可以从5.8(单六铁体相)提高到20 MGOe。该方法实现了无稀土永磁体的$(BH)_{\max }$期望,从而解决了稀土矿物安全和供应链不稳定的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Maximum Energy Product (BH)max Model for Rare-Earth-Free Magnets: Core–Shell Nanostructure
This article presents an analytical model for the maximum energy product [ $(BH)_{\max }$ ] in core–shell structured magnetic exchange-coupled nanomagnets. The model was validated by comparing its results to the $(BH)_{\max }$ from core–shell magnets reported in the literature. This approach can serve as a universal model for designing core–shell magnets that achieve the desired $(BH)_{\max }$ . The $(BH)_{\max }$ was determined under two distinct nucleation field ( $H_{\mathrm {N}}$ ) conditions: $H_{\mathrm {N}} \le M_{\mathrm {r}}$ /2 and $H_{\mathrm {N}} \ge M_{\mathrm {r}}$ /2, where $M_{\mathrm {r}}$ is the remanent magnetization. In addition, two different values of magnetic hysteresis loop squareness (SQ $= M_{\mathrm {r}}$ / $M_{\mathrm {S}}$ ) were used: 1.0 and 0.7. The soft magnetic shell’s remanent magnetic flux density ( $B_{\mathrm {r}}$ ) ranged from 0.7 to 2.2 T, while the core diameter ( $D_{\mathrm {h}}$ ) varied between 50 and 250 nm in this $(BH)_{\max }$ model. The low-temperature phase (LTP) MnBi-core/soft-shell nanomagnet can achieve a $(BH)_{\max }$ of 40 MGOe at a $B_{\mathrm {r}}$ of 1.6 T, with a shell thickness ( $\delta _{\mathrm {S}}$ ) of 40 nm, a $D_{\mathrm {h}}$ of 250 nm, and a volume fraction of the hard-core ( $f_{\mathrm {h}}$ ) of 0.43. The $(BH)_{\max }$ of the hexaferrite (SrFe12O19)/soft-shell (1.9 T) nanomagnet can be improved from 5.8 (single hexaferrite phase) to 20 MGOe. This approach achieves the desired $(BH)_{\max }$ of the rare-earth(RE)-free permanent magnet, thereby tackling issues related to RE mineral security and unstable supply chains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信