基于h基有限元公式的磁通连杆计算方法

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Lukas Daniel Domenig;Klaus Roppert;Herbert De Gersem;Manfred Kaltenbacher
{"title":"基于h基有限元公式的磁通连杆计算方法","authors":"Lukas Daniel Domenig;Klaus Roppert;Herbert De Gersem;Manfred Kaltenbacher","doi":"10.1109/TMAG.2025.3585725","DOIUrl":null,"url":null,"abstract":"This work presents four methods to obtain flux linkages along an <inline-formula> <tex-math>${\\boldsymbol {H}}$ </tex-math></inline-formula>-based formulation in the same elegant and efficient way as along magnetic vector potential formulations. In a post-processing step, the magnetic vector potential is found: 1) as a by-product of a penalized <inline-formula> <tex-math>${\\boldsymbol {H}}$ </tex-math></inline-formula>-formulation; 2) by solving an additional field problem; 3) by the Biot–Savart (BS) integral; and 4) by the Poincaré integral. The magnetic scalar potential formulation combined with the BS or the Poincaré integral allows to solve the magnetic field and post-process the magnetic fluxes of an industry-relevant example with a five times better computational efficiency than the standard magnetic vector potential approach.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 9","pages":"1-7"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11069308","citationCount":"0","resultStr":"{\"title\":\"Methods to Compute Magnetic Flux Linkages Along H-Based Finite Element Formulations\",\"authors\":\"Lukas Daniel Domenig;Klaus Roppert;Herbert De Gersem;Manfred Kaltenbacher\",\"doi\":\"10.1109/TMAG.2025.3585725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents four methods to obtain flux linkages along an <inline-formula> <tex-math>${\\\\boldsymbol {H}}$ </tex-math></inline-formula>-based formulation in the same elegant and efficient way as along magnetic vector potential formulations. In a post-processing step, the magnetic vector potential is found: 1) as a by-product of a penalized <inline-formula> <tex-math>${\\\\boldsymbol {H}}$ </tex-math></inline-formula>-formulation; 2) by solving an additional field problem; 3) by the Biot–Savart (BS) integral; and 4) by the Poincaré integral. The magnetic scalar potential formulation combined with the BS or the Poincaré integral allows to solve the magnetic field and post-process the magnetic fluxes of an industry-relevant example with a five times better computational efficiency than the standard magnetic vector potential approach.\",\"PeriodicalId\":13405,\"journal\":{\"name\":\"IEEE Transactions on Magnetics\",\"volume\":\"61 9\",\"pages\":\"1-7\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11069308\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Magnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11069308/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11069308/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了四种方法来获得通量连杆沿${\boldsymbol {H}}$为基础的公式在相同的优雅和有效的方式沿磁矢量势公式。在后处理步骤中,发现磁矢量势:1)作为惩罚${\boldsymbol {H}}$ -公式的副产品;2)通过求解附加场问题;3) Biot-Savart (BS)积分;4)用庞卡罗积分。磁标量势公式结合BS或poincar积分可以求解磁场并对工业相关实例的磁通量进行后处理,其计算效率是标准磁矢量势方法的五倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methods to Compute Magnetic Flux Linkages Along H-Based Finite Element Formulations
This work presents four methods to obtain flux linkages along an ${\boldsymbol {H}}$ -based formulation in the same elegant and efficient way as along magnetic vector potential formulations. In a post-processing step, the magnetic vector potential is found: 1) as a by-product of a penalized ${\boldsymbol {H}}$ -formulation; 2) by solving an additional field problem; 3) by the Biot–Savart (BS) integral; and 4) by the Poincaré integral. The magnetic scalar potential formulation combined with the BS or the Poincaré integral allows to solve the magnetic field and post-process the magnetic fluxes of an industry-relevant example with a five times better computational efficiency than the standard magnetic vector potential approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信