利用碳质和金属改性剂增强cutc对挥发性有机化合物(VOC)的吸附和电热再生

IF 4.7 3区 材料科学 Q1 CHEMISTRY, APPLIED
Sina Neshati, Zaher Hashisho
{"title":"利用碳质和金属改性剂增强cutc对挥发性有机化合物(VOC)的吸附和电热再生","authors":"Sina Neshati,&nbsp;Zaher Hashisho","doi":"10.1016/j.micromeso.2025.113821","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to enhance the adsorption capacity for volatile organic compounds (VOCs) and the electrical conductivity of a metal-organic framework (MOF) CuBTC to enable electrothermal regeneration after VOC exposure. CuBTC was modified by integrating carbonaceous materials using sonication-assisted synthesis, solvothermal techniques, and post-synthesis physical mixing, as well as incorporating metallic modifiers using sonication-assisted synthesis. X-ray diffraction (XRD) confirmed the samples' structural integrity, and thermogravimetric analysis (TGA) provided insights into thermal stability up to 250 °C and modifier content in the final product. Nitrogen and n-heptane adsorption isotherms assessed adsorption properties and surface characteristics, while transmission electron microscopy (TEM) evaluated the dispersion of the modifiers. Electrical resistivity measurements indicated that graphene was the most effective in reducing resistivity (achieving resistivity of 0.04 Ω m), followed by CNT-modified samples. Although most modified samples had reduced surface areas and porosities, physically mixing CuBTC with 50 wt% PC (porous carbon) yielded a sample with a surface area of 1294 m<sup>2</sup>/g, surpassing the 1228 m<sup>2</sup>/g of unmodified CuBTC, with a resistivity of 0.42 Ω m, within the suitable range for electrothermal regeneration (0.2–0.8 Ω m). The electrothermal regeneration of this sample consumed 71 kJ/g.hr, less than the 300 kJ/g.hr required for conventional regeneration, and reached a desorption temperature of 120 °C in 30 min, compared to 60 min for conventional regeneration. This proof-of-concept study demonstrates the potential for modifying CuBTC to produce electrically conductive MOFs suitable for electrothermal regeneration. It offers an energy-efficient approach to pollution control and remediation.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"398 ","pages":"Article 113821"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing volatile organic compounds (VOC) adsorption and electrothermal regeneration of CuBTC using carbonaceous and metallic modifiers\",\"authors\":\"Sina Neshati,&nbsp;Zaher Hashisho\",\"doi\":\"10.1016/j.micromeso.2025.113821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed to enhance the adsorption capacity for volatile organic compounds (VOCs) and the electrical conductivity of a metal-organic framework (MOF) CuBTC to enable electrothermal regeneration after VOC exposure. CuBTC was modified by integrating carbonaceous materials using sonication-assisted synthesis, solvothermal techniques, and post-synthesis physical mixing, as well as incorporating metallic modifiers using sonication-assisted synthesis. X-ray diffraction (XRD) confirmed the samples' structural integrity, and thermogravimetric analysis (TGA) provided insights into thermal stability up to 250 °C and modifier content in the final product. Nitrogen and n-heptane adsorption isotherms assessed adsorption properties and surface characteristics, while transmission electron microscopy (TEM) evaluated the dispersion of the modifiers. Electrical resistivity measurements indicated that graphene was the most effective in reducing resistivity (achieving resistivity of 0.04 Ω m), followed by CNT-modified samples. Although most modified samples had reduced surface areas and porosities, physically mixing CuBTC with 50 wt% PC (porous carbon) yielded a sample with a surface area of 1294 m<sup>2</sup>/g, surpassing the 1228 m<sup>2</sup>/g of unmodified CuBTC, with a resistivity of 0.42 Ω m, within the suitable range for electrothermal regeneration (0.2–0.8 Ω m). The electrothermal regeneration of this sample consumed 71 kJ/g.hr, less than the 300 kJ/g.hr required for conventional regeneration, and reached a desorption temperature of 120 °C in 30 min, compared to 60 min for conventional regeneration. This proof-of-concept study demonstrates the potential for modifying CuBTC to produce electrically conductive MOFs suitable for electrothermal regeneration. It offers an energy-efficient approach to pollution control and remediation.</div></div>\",\"PeriodicalId\":392,\"journal\":{\"name\":\"Microporous and Mesoporous Materials\",\"volume\":\"398 \",\"pages\":\"Article 113821\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microporous and Mesoporous Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387181125003361\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125003361","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在提高金属-有机框架(MOF) CuBTC对挥发性有机化合物(VOCs)的吸附能力和电导率,以实现VOC暴露后的电热再生。通过超声辅助合成、溶剂热技术、合成后物理混合以及超声辅助合成的金属改性剂,对CuBTC进行了改性。x射线衍射(XRD)证实了样品的结构完整性,热重分析(TGA)提供了高达250°C的热稳定性和最终产品中改性剂含量的信息。氮和正庚烷吸附等温线评估了吸附性能和表面特征,透射电镜(TEM)评估了改性剂的分散性。电阻率测量表明,石墨烯在降低电阻率方面最有效(电阻率为0.04 Ω m),其次是碳纳米管修饰的样品。虽然大多数改性样品的表面积和孔隙率都降低了,但将CuBTC与50 wt%的PC(多孔碳)物理混合得到的样品表面积为1294 m2/g,超过了未改性的1228 m2/g,电阻率为0.42 Ω m,在电热再生的合适范围内(0.2-0.8 Ω m)。该样品的电热再生消耗为71 kJ/g。hr,小于300kj /g。常规再生需要60分钟,而在30分钟内达到120°C的解吸温度。这一概念验证研究证明了改造CuBTC以生产适合电热再生的导电mof的潜力。它为污染控制和补救提供了一种节能的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing volatile organic compounds (VOC) adsorption and electrothermal regeneration of CuBTC using carbonaceous and metallic modifiers

Enhancing volatile organic compounds (VOC) adsorption and electrothermal regeneration of CuBTC using carbonaceous and metallic modifiers
This study aimed to enhance the adsorption capacity for volatile organic compounds (VOCs) and the electrical conductivity of a metal-organic framework (MOF) CuBTC to enable electrothermal regeneration after VOC exposure. CuBTC was modified by integrating carbonaceous materials using sonication-assisted synthesis, solvothermal techniques, and post-synthesis physical mixing, as well as incorporating metallic modifiers using sonication-assisted synthesis. X-ray diffraction (XRD) confirmed the samples' structural integrity, and thermogravimetric analysis (TGA) provided insights into thermal stability up to 250 °C and modifier content in the final product. Nitrogen and n-heptane adsorption isotherms assessed adsorption properties and surface characteristics, while transmission electron microscopy (TEM) evaluated the dispersion of the modifiers. Electrical resistivity measurements indicated that graphene was the most effective in reducing resistivity (achieving resistivity of 0.04 Ω m), followed by CNT-modified samples. Although most modified samples had reduced surface areas and porosities, physically mixing CuBTC with 50 wt% PC (porous carbon) yielded a sample with a surface area of 1294 m2/g, surpassing the 1228 m2/g of unmodified CuBTC, with a resistivity of 0.42 Ω m, within the suitable range for electrothermal regeneration (0.2–0.8 Ω m). The electrothermal regeneration of this sample consumed 71 kJ/g.hr, less than the 300 kJ/g.hr required for conventional regeneration, and reached a desorption temperature of 120 °C in 30 min, compared to 60 min for conventional regeneration. This proof-of-concept study demonstrates the potential for modifying CuBTC to produce electrically conductive MOFs suitable for electrothermal regeneration. It offers an energy-efficient approach to pollution control and remediation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信