Taeho Kim , Wenbo Zhou , Vinh Ngoc Tran , Liujing Zhang , Jingfeng Wang , Modi Zhu , Aleksey Y. Sheshukov , Tianqi Zhang , Desheng Liu , Valeriy S. Mazepa , Alexandr A. Sokolov , Victor V. Valdayskikh , Valeriy Y. Ivanov
{"title":"北极森林-冻土带带降水引起的辐射通量观测偏差","authors":"Taeho Kim , Wenbo Zhou , Vinh Ngoc Tran , Liujing Zhang , Jingfeng Wang , Modi Zhu , Aleksey Y. Sheshukov , Tianqi Zhang , Desheng Liu , Valeriy S. Mazepa , Alexandr A. Sokolov , Victor V. Valdayskikh , Valeriy Y. Ivanov","doi":"10.1016/j.agrformet.2025.110814","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate measurement of net radiation in the high-latitude Arctic regions is challenging since rain and snow events often introduce substantial measurement errors. To reduce the precipitation-induced measurement errors of downward radiation, customized data-driven methods are developed to reconstruct downward radiative fluxes from the biased radiation measurements. This study uses four years of field data across ten plots covered with forest, trees, and tundra in the Polar Urals from July 2018 to July 2022. Rain and snow on the radiometers absorb and block shortwave radiation and emit longwave radiation, leading to underestimation of downward shortwave and overestimation of downward longwave radiation. Snow causes more errors than rain. Seasonal variation of reconstructed net radiation for three dominant vegetation types indicates that their differences are most pronounced in April and least in September. Furthermore, forest and tree plots consistently exhibit higher magnitudes of net radiation and longer seasons of positive net radiation than tundra plots. This study advances methodologies for reconstructing corrupted net radiation data in the Arctic and offers insights into the variability of net radiation patterns within the forest-tundra ecotone.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"374 ","pages":"Article 110814"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biases in radiative flux observations due to precipitation across the Arctic forest-tundra ecotone\",\"authors\":\"Taeho Kim , Wenbo Zhou , Vinh Ngoc Tran , Liujing Zhang , Jingfeng Wang , Modi Zhu , Aleksey Y. Sheshukov , Tianqi Zhang , Desheng Liu , Valeriy S. Mazepa , Alexandr A. Sokolov , Victor V. Valdayskikh , Valeriy Y. Ivanov\",\"doi\":\"10.1016/j.agrformet.2025.110814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate measurement of net radiation in the high-latitude Arctic regions is challenging since rain and snow events often introduce substantial measurement errors. To reduce the precipitation-induced measurement errors of downward radiation, customized data-driven methods are developed to reconstruct downward radiative fluxes from the biased radiation measurements. This study uses four years of field data across ten plots covered with forest, trees, and tundra in the Polar Urals from July 2018 to July 2022. Rain and snow on the radiometers absorb and block shortwave radiation and emit longwave radiation, leading to underestimation of downward shortwave and overestimation of downward longwave radiation. Snow causes more errors than rain. Seasonal variation of reconstructed net radiation for three dominant vegetation types indicates that their differences are most pronounced in April and least in September. Furthermore, forest and tree plots consistently exhibit higher magnitudes of net radiation and longer seasons of positive net radiation than tundra plots. This study advances methodologies for reconstructing corrupted net radiation data in the Arctic and offers insights into the variability of net radiation patterns within the forest-tundra ecotone.</div></div>\",\"PeriodicalId\":50839,\"journal\":{\"name\":\"Agricultural and Forest Meteorology\",\"volume\":\"374 \",\"pages\":\"Article 110814\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural and Forest Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168192325004332\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192325004332","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Biases in radiative flux observations due to precipitation across the Arctic forest-tundra ecotone
Accurate measurement of net radiation in the high-latitude Arctic regions is challenging since rain and snow events often introduce substantial measurement errors. To reduce the precipitation-induced measurement errors of downward radiation, customized data-driven methods are developed to reconstruct downward radiative fluxes from the biased radiation measurements. This study uses four years of field data across ten plots covered with forest, trees, and tundra in the Polar Urals from July 2018 to July 2022. Rain and snow on the radiometers absorb and block shortwave radiation and emit longwave radiation, leading to underestimation of downward shortwave and overestimation of downward longwave radiation. Snow causes more errors than rain. Seasonal variation of reconstructed net radiation for three dominant vegetation types indicates that their differences are most pronounced in April and least in September. Furthermore, forest and tree plots consistently exhibit higher magnitudes of net radiation and longer seasons of positive net radiation than tundra plots. This study advances methodologies for reconstructing corrupted net radiation data in the Arctic and offers insights into the variability of net radiation patterns within the forest-tundra ecotone.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.