希尔伯特空间中的密度和可咬合性

IF 3.3 Q2 MULTIDISCIPLINARY SCIENCES
Joseph Owuor Owino , Benard Okelo
{"title":"希尔伯特空间中的密度和可咬合性","authors":"Joseph Owuor Owino ,&nbsp;Benard Okelo","doi":"10.1016/j.sciaf.2025.e02893","DOIUrl":null,"url":null,"abstract":"<div><div>This paper establishes necessary and sufficient conditions for density and dentability in infinite-dimensional complex Hilbert spaces, demonstrating their fundamental connections to operator theory and optimization through a synthesis of spectral decomposition methods and compact operator approximations. The main result characterizes dentable closed convex subsets <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>⊂</mo><mi>H</mi></mrow></math></span> as precisely those whose extreme points form a weakly dense subset, leveraging the Radon–Nikodým Property of Hilbert spaces, and proves the preservation of dentability under countable intersections, finite tensor products, and Cartesian products. The technical framework integrates geometric functional analysis with operator theory, showing that every dentable subset contains a dense separable subspace and that convex dentable operator sets are densely defined. Applications include convergence analysis of gradient-based optimization in function spaces, as well as implications for quantum computing architectures, high-dimensional data analysis, and computational geometry. These theoretical developments also open new directions for spatial modeling and astrophysical density analysis via Hilbert space methods.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"29 ","pages":"Article e02893"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On density and dentability in Hilbert spaces\",\"authors\":\"Joseph Owuor Owino ,&nbsp;Benard Okelo\",\"doi\":\"10.1016/j.sciaf.2025.e02893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper establishes necessary and sufficient conditions for density and dentability in infinite-dimensional complex Hilbert spaces, demonstrating their fundamental connections to operator theory and optimization through a synthesis of spectral decomposition methods and compact operator approximations. The main result characterizes dentable closed convex subsets <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>⊂</mo><mi>H</mi></mrow></math></span> as precisely those whose extreme points form a weakly dense subset, leveraging the Radon–Nikodým Property of Hilbert spaces, and proves the preservation of dentability under countable intersections, finite tensor products, and Cartesian products. The technical framework integrates geometric functional analysis with operator theory, showing that every dentable subset contains a dense separable subspace and that convex dentable operator sets are densely defined. Applications include convergence analysis of gradient-based optimization in function spaces, as well as implications for quantum computing architectures, high-dimensional data analysis, and computational geometry. These theoretical developments also open new directions for spatial modeling and astrophysical density analysis via Hilbert space methods.</div></div>\",\"PeriodicalId\":21690,\"journal\":{\"name\":\"Scientific African\",\"volume\":\"29 \",\"pages\":\"Article e02893\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific African\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468227625003631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625003631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了无限维复Hilbert空间中密度和可齿性的充分必要条件,并通过谱分解方法和紧算子近似的综合证明了它们与算子理论和优化的基本联系。主要结果利用Radon-Nikodým希尔伯特空间的性质,将可dentable闭凸子集H0∧H精确地刻画为其极值点构成弱密集子集的闭凸子集,并证明了可可数交集、有限张量积和笛卡尔积下可dentability的保存性。该技术框架将几何泛函分析与算子理论相结合,证明了每个可登子集都包含一个密集可分子空间,凸可登算子集是密集定义的。应用包括函数空间中基于梯度的优化的收敛分析,以及对量子计算架构、高维数据分析和计算几何的影响。这些理论的发展也为利用希尔伯特空间方法进行空间建模和天体物理密度分析开辟了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On density and dentability in Hilbert spaces
This paper establishes necessary and sufficient conditions for density and dentability in infinite-dimensional complex Hilbert spaces, demonstrating their fundamental connections to operator theory and optimization through a synthesis of spectral decomposition methods and compact operator approximations. The main result characterizes dentable closed convex subsets H0H as precisely those whose extreme points form a weakly dense subset, leveraging the Radon–Nikodým Property of Hilbert spaces, and proves the preservation of dentability under countable intersections, finite tensor products, and Cartesian products. The technical framework integrates geometric functional analysis with operator theory, showing that every dentable subset contains a dense separable subspace and that convex dentable operator sets are densely defined. Applications include convergence analysis of gradient-based optimization in function spaces, as well as implications for quantum computing architectures, high-dimensional data analysis, and computational geometry. These theoretical developments also open new directions for spatial modeling and astrophysical density analysis via Hilbert space methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信