CCANet:用于无人机目标检测的跨尺度上下文聚合网络

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lei Shang , Qihan He , Huan Lei , Wenyuan Yang
{"title":"CCANet:用于无人机目标检测的跨尺度上下文聚合网络","authors":"Lei Shang ,&nbsp;Qihan He ,&nbsp;Huan Lei ,&nbsp;Wenyuan Yang","doi":"10.1016/j.cviu.2025.104472","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid advancement of deep learning technology, Unmanned Aerial Vehicle (UAV) object detection demonstrates significant potential across various fields. However, multi-scale object variations and complex environmental interference in UAV images present considerable challenges. This paper proposes a new UAV object detection network named Cross-scale Context Aggregation Network (CCANet), which contains Multi-scale Convolution Aggregation Darknet (MCADarknet) and Cross-scale Context Aggregation Feature Pyramid Network (CCA-FPN). First, MCADarknet serves as a multi-scale feature extraction network. It employs parallel multi-scale convolutional kernels and depth-wise strip convolution techniques to expand the network’s receptive field, extracting feature maps at four different scales layer by layer. Second, to address interference in complex scenes, a Context Enhanced Fusion method enhances the interaction between adjacent features extracted by MCADarknet and higher-level features to form intermediate features. Finally, CCA-FPN employs a cross-scale fusion strategy to deeply integrate shallow, intermediate, and deep feature information, thereby enhancing object representation in complex scenarios. Experimental results indicate that CCANet performs well on three public datasets. In particular, <span><math><msub><mrow><mo>mAP</mo></mrow><mrow><mn>50</mn></mrow></msub></math></span> and <span><math><msub><mrow><mo>mAP</mo></mrow><mrow><mn>50</mn><mo>−</mo><mn>95</mn></mrow></msub></math></span> can reach 47.4% and 29.4% respectively on the VisDrone dataset. Compared to the baseline model, it achieves improvements of 6.2% and 4.3%.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"260 ","pages":"Article 104472"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CCANet: A Cross-scale Context Aggregation Network for UAV object detection\",\"authors\":\"Lei Shang ,&nbsp;Qihan He ,&nbsp;Huan Lei ,&nbsp;Wenyuan Yang\",\"doi\":\"10.1016/j.cviu.2025.104472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the rapid advancement of deep learning technology, Unmanned Aerial Vehicle (UAV) object detection demonstrates significant potential across various fields. However, multi-scale object variations and complex environmental interference in UAV images present considerable challenges. This paper proposes a new UAV object detection network named Cross-scale Context Aggregation Network (CCANet), which contains Multi-scale Convolution Aggregation Darknet (MCADarknet) and Cross-scale Context Aggregation Feature Pyramid Network (CCA-FPN). First, MCADarknet serves as a multi-scale feature extraction network. It employs parallel multi-scale convolutional kernels and depth-wise strip convolution techniques to expand the network’s receptive field, extracting feature maps at four different scales layer by layer. Second, to address interference in complex scenes, a Context Enhanced Fusion method enhances the interaction between adjacent features extracted by MCADarknet and higher-level features to form intermediate features. Finally, CCA-FPN employs a cross-scale fusion strategy to deeply integrate shallow, intermediate, and deep feature information, thereby enhancing object representation in complex scenarios. Experimental results indicate that CCANet performs well on three public datasets. In particular, <span><math><msub><mrow><mo>mAP</mo></mrow><mrow><mn>50</mn></mrow></msub></math></span> and <span><math><msub><mrow><mo>mAP</mo></mrow><mrow><mn>50</mn><mo>−</mo><mn>95</mn></mrow></msub></math></span> can reach 47.4% and 29.4% respectively on the VisDrone dataset. Compared to the baseline model, it achieves improvements of 6.2% and 4.3%.</div></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":\"260 \",\"pages\":\"Article 104472\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S107731422500195X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107731422500195X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着深度学习技术的快速发展,无人机(UAV)目标检测在各个领域显示出巨大的潜力。然而,多尺度目标变化和复杂环境干扰对无人机图像的处理提出了相当大的挑战。本文提出了一种新的无人机目标检测网络——跨尺度上下文聚合网络(CCANet),该网络包含多尺度卷积聚合暗网(MCADarknet)和跨尺度上下文聚合特征金字塔网络(CCA-FPN)。首先,MCADarknet作为一个多尺度特征提取网络。它采用并行多尺度卷积核和深度条形卷积技术来扩展网络的接受域,逐层提取四个不同尺度的特征图。其次,为了解决复杂场景中的干扰问题,采用上下文增强融合方法,增强MCADarknet提取的相邻特征与更高级特征之间的相互作用,形成中间特征。最后,CCA-FPN采用跨尺度融合策略,深度融合浅层、中层和深层特征信息,从而增强复杂场景下的目标表示。实验结果表明,CCANet在三个公共数据集上表现良好。其中,mAP50和mAP50−95在VisDrone数据集上的准确率分别达到47.4%和29.4%。与基线模型相比,改进幅度分别为6.2%和4.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CCANet: A Cross-scale Context Aggregation Network for UAV object detection
With the rapid advancement of deep learning technology, Unmanned Aerial Vehicle (UAV) object detection demonstrates significant potential across various fields. However, multi-scale object variations and complex environmental interference in UAV images present considerable challenges. This paper proposes a new UAV object detection network named Cross-scale Context Aggregation Network (CCANet), which contains Multi-scale Convolution Aggregation Darknet (MCADarknet) and Cross-scale Context Aggregation Feature Pyramid Network (CCA-FPN). First, MCADarknet serves as a multi-scale feature extraction network. It employs parallel multi-scale convolutional kernels and depth-wise strip convolution techniques to expand the network’s receptive field, extracting feature maps at four different scales layer by layer. Second, to address interference in complex scenes, a Context Enhanced Fusion method enhances the interaction between adjacent features extracted by MCADarknet and higher-level features to form intermediate features. Finally, CCA-FPN employs a cross-scale fusion strategy to deeply integrate shallow, intermediate, and deep feature information, thereby enhancing object representation in complex scenarios. Experimental results indicate that CCANet performs well on three public datasets. In particular, mAP50 and mAP5095 can reach 47.4% and 29.4% respectively on the VisDrone dataset. Compared to the baseline model, it achieves improvements of 6.2% and 4.3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信