Mohammad Mashayekhi , Kamran Salehian , Abbas Ozgoli , Saeed Abdollahi , Abdolali Abdipour , Ahmed A. Kishk
{"title":"基于迭代残差校正网络的ku波段SIW谐振结构ai反设计","authors":"Mohammad Mashayekhi , Kamran Salehian , Abbas Ozgoli , Saeed Abdollahi , Abdolali Abdipour , Ahmed A. Kishk","doi":"10.1016/j.aeue.2025.156003","DOIUrl":null,"url":null,"abstract":"<div><div>Designing high-performance substrate-integrated waveguide (SIW) filters with both closely spaced and widely separated resonances is challenging. Consequently, there is a growing need for robust methods that reduce reliance on time-consuming electromagnetic (EM) simulations. In this study, a deep learning-based framework was developed and validated for the inverse design of multi-mode SIW filters with both closely spaced and widely separated resonances. A series of SIW filters were designed, fabricated, and experimentally evaluated. A three-stage deep learning framework was implemented, consisting of a Feedforward Inverse Model (FIM), a Hybrid Inverse-Forward Residual Refinement Network (HiFR<sup>2</sup>-Net), and an Iterative Residual Correction Network (IRC-Net). The design methodology and performance of each model were systematically analyzed. Notably, IRC-Net outperformed both FIM and HiFR<sup>2</sup>-Net, achieving systematic error reduction over five correction iterations. Experimental results showed a reduction in mean squared error (MSE) from 0.00191 to 0.00146 and mean absolute error (MAE) from 0.0262 to 0.0209, indicating improved accuracy and convergence. The proposed framework demonstrates the capability to enable robust, accurate, and generalizable inverse design of complex microwave filters with minimal simulation cost. This approach is expected to facilitate rapid prototyping of advanced filter designs and could extend to other high-frequency components in microwave and millimeter-wave technologies.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"201 ","pages":"Article 156003"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-powered inverse design of Ku-band SIW resonant structures by iterative residual correction network\",\"authors\":\"Mohammad Mashayekhi , Kamran Salehian , Abbas Ozgoli , Saeed Abdollahi , Abdolali Abdipour , Ahmed A. Kishk\",\"doi\":\"10.1016/j.aeue.2025.156003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Designing high-performance substrate-integrated waveguide (SIW) filters with both closely spaced and widely separated resonances is challenging. Consequently, there is a growing need for robust methods that reduce reliance on time-consuming electromagnetic (EM) simulations. In this study, a deep learning-based framework was developed and validated for the inverse design of multi-mode SIW filters with both closely spaced and widely separated resonances. A series of SIW filters were designed, fabricated, and experimentally evaluated. A three-stage deep learning framework was implemented, consisting of a Feedforward Inverse Model (FIM), a Hybrid Inverse-Forward Residual Refinement Network (HiFR<sup>2</sup>-Net), and an Iterative Residual Correction Network (IRC-Net). The design methodology and performance of each model were systematically analyzed. Notably, IRC-Net outperformed both FIM and HiFR<sup>2</sup>-Net, achieving systematic error reduction over five correction iterations. Experimental results showed a reduction in mean squared error (MSE) from 0.00191 to 0.00146 and mean absolute error (MAE) from 0.0262 to 0.0209, indicating improved accuracy and convergence. The proposed framework demonstrates the capability to enable robust, accurate, and generalizable inverse design of complex microwave filters with minimal simulation cost. This approach is expected to facilitate rapid prototyping of advanced filter designs and could extend to other high-frequency components in microwave and millimeter-wave technologies.</div></div>\",\"PeriodicalId\":50844,\"journal\":{\"name\":\"Aeu-International Journal of Electronics and Communications\",\"volume\":\"201 \",\"pages\":\"Article 156003\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aeu-International Journal of Electronics and Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1434841125003449\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841125003449","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
AI-powered inverse design of Ku-band SIW resonant structures by iterative residual correction network
Designing high-performance substrate-integrated waveguide (SIW) filters with both closely spaced and widely separated resonances is challenging. Consequently, there is a growing need for robust methods that reduce reliance on time-consuming electromagnetic (EM) simulations. In this study, a deep learning-based framework was developed and validated for the inverse design of multi-mode SIW filters with both closely spaced and widely separated resonances. A series of SIW filters were designed, fabricated, and experimentally evaluated. A three-stage deep learning framework was implemented, consisting of a Feedforward Inverse Model (FIM), a Hybrid Inverse-Forward Residual Refinement Network (HiFR2-Net), and an Iterative Residual Correction Network (IRC-Net). The design methodology and performance of each model were systematically analyzed. Notably, IRC-Net outperformed both FIM and HiFR2-Net, achieving systematic error reduction over five correction iterations. Experimental results showed a reduction in mean squared error (MSE) from 0.00191 to 0.00146 and mean absolute error (MAE) from 0.0262 to 0.0209, indicating improved accuracy and convergence. The proposed framework demonstrates the capability to enable robust, accurate, and generalizable inverse design of complex microwave filters with minimal simulation cost. This approach is expected to facilitate rapid prototyping of advanced filter designs and could extend to other high-frequency components in microwave and millimeter-wave technologies.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.