{"title":"解码物理环境在蛋白质相变中的作用","authors":"Wan-Yi Ge, Da-Chuan Yin","doi":"10.1016/j.cis.2025.103643","DOIUrl":null,"url":null,"abstract":"<div><div>Phase transitions, as fundamental phenomena in physical sciences, are well-studied and a full theoretical framework has been established. The research has recently expanded into biological sciences after the milestone discovery of liquid-liquid phase separation (LLPS), and the latest studies are focusing not only LLPS but also liquid-solid phase transition (LSPT). These phase transitions are important fundamental biological processes such as formation of membraneless organelles, and pathogenesis of diseases such as neurodegenerative diseases, type 2 diabetes, and amyloidogenic disorders. These findings provide unprecedented perspectives for deciphering the physicochemical principles underlying living systems and associated disease pathogenesis. In this review we systematically analyze the hierarchical progression of phase transition pathways, delineating how physical factors (e.g., temperature, magnetic field, electric field, etc.) govern transition kinetics and final state selection. The methodological section provides a comprehensive review of experimental techniques applicable in studying phase transitions in biological systems. The elucidation of biological phase transitions is fundamentally important in that it not only provides a novel paradigm for understanding spatiotemporal regulation of cellular organization, but also provides mechanistic insights for developing therapeutic strategies targeting pathological phase transitions. Notably, the identification of physical modulation mechanisms can help to develop non-pharmacological intervention strategies, potentially revolutionizing treatment approaches for protein-misfolding disorders through precisely controlled phase manipulation.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"345 ","pages":"Article 103643"},"PeriodicalIF":19.3000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding physical environment's role in protein phase transition\",\"authors\":\"Wan-Yi Ge, Da-Chuan Yin\",\"doi\":\"10.1016/j.cis.2025.103643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Phase transitions, as fundamental phenomena in physical sciences, are well-studied and a full theoretical framework has been established. The research has recently expanded into biological sciences after the milestone discovery of liquid-liquid phase separation (LLPS), and the latest studies are focusing not only LLPS but also liquid-solid phase transition (LSPT). These phase transitions are important fundamental biological processes such as formation of membraneless organelles, and pathogenesis of diseases such as neurodegenerative diseases, type 2 diabetes, and amyloidogenic disorders. These findings provide unprecedented perspectives for deciphering the physicochemical principles underlying living systems and associated disease pathogenesis. In this review we systematically analyze the hierarchical progression of phase transition pathways, delineating how physical factors (e.g., temperature, magnetic field, electric field, etc.) govern transition kinetics and final state selection. The methodological section provides a comprehensive review of experimental techniques applicable in studying phase transitions in biological systems. The elucidation of biological phase transitions is fundamentally important in that it not only provides a novel paradigm for understanding spatiotemporal regulation of cellular organization, but also provides mechanistic insights for developing therapeutic strategies targeting pathological phase transitions. Notably, the identification of physical modulation mechanisms can help to develop non-pharmacological intervention strategies, potentially revolutionizing treatment approaches for protein-misfolding disorders through precisely controlled phase manipulation.</div></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"345 \",\"pages\":\"Article 103643\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868625002544\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625002544","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Decoding physical environment's role in protein phase transition
Phase transitions, as fundamental phenomena in physical sciences, are well-studied and a full theoretical framework has been established. The research has recently expanded into biological sciences after the milestone discovery of liquid-liquid phase separation (LLPS), and the latest studies are focusing not only LLPS but also liquid-solid phase transition (LSPT). These phase transitions are important fundamental biological processes such as formation of membraneless organelles, and pathogenesis of diseases such as neurodegenerative diseases, type 2 diabetes, and amyloidogenic disorders. These findings provide unprecedented perspectives for deciphering the physicochemical principles underlying living systems and associated disease pathogenesis. In this review we systematically analyze the hierarchical progression of phase transition pathways, delineating how physical factors (e.g., temperature, magnetic field, electric field, etc.) govern transition kinetics and final state selection. The methodological section provides a comprehensive review of experimental techniques applicable in studying phase transitions in biological systems. The elucidation of biological phase transitions is fundamentally important in that it not only provides a novel paradigm for understanding spatiotemporal regulation of cellular organization, but also provides mechanistic insights for developing therapeutic strategies targeting pathological phase transitions. Notably, the identification of physical modulation mechanisms can help to develop non-pharmacological intervention strategies, potentially revolutionizing treatment approaches for protein-misfolding disorders through precisely controlled phase manipulation.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.