{"title":"稀疏图的富邻边着色","authors":"Lily Chen , Chenghao Nan , Xiangqian Zhou","doi":"10.1016/j.dam.2025.08.043","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>ϕ</mi></math></span> be a proper edge-coloring of a graph <span><math><mi>G</mi></math></span>. An edge <span><math><mi>e</mi></math></span> is rich if the edges adjacent to <span><math><mi>e</mi></math></span> receive distinct colors. In particular, a pendant edge and an isolated edge are both rich. Petruševski and Škrekovski (2024) introduced the concept of rich-neighbor edge-coloring as a weakening of strong edge-coloring. A proper <span><math><mi>k</mi></math></span>-edge-coloring <span><math><mi>ϕ</mi></math></span> is a rich-neighbor <span><math><mi>k</mi></math></span>-coloring if each non-isolated edge is adjacent to at least one rich edge. Petruševski and Škrekovski (2024) conjectured that every connected subcubic graph admits a rich-neighbor 5-coloring except for <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. We show that if <span><math><mi>G</mi></math></span> is a subcubic graph, then <ul><li><span>•</span><span><div>[(1)] if <span><math><mrow><mi>m</mi><mi>a</mi><mi>d</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo><</mo><mfrac><mrow><mn>36</mn></mrow><mrow><mn>13</mn></mrow></mfrac></mrow></math></span>, then <span><math><mi>G</mi></math></span> has a rich-neighbor 6-coloring; and</div></span></li><li><span>•</span><span><div>[(2)] if <span><math><mi>G</mi></math></span> is claw-free, then <span><math><mi>G</mi></math></span> has a rich-neighbor 6-coloring.</div></span></li></ul></div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 538-546"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the rich-neighbor edge-coloring of sparse graphs\",\"authors\":\"Lily Chen , Chenghao Nan , Xiangqian Zhou\",\"doi\":\"10.1016/j.dam.2025.08.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>ϕ</mi></math></span> be a proper edge-coloring of a graph <span><math><mi>G</mi></math></span>. An edge <span><math><mi>e</mi></math></span> is rich if the edges adjacent to <span><math><mi>e</mi></math></span> receive distinct colors. In particular, a pendant edge and an isolated edge are both rich. Petruševski and Škrekovski (2024) introduced the concept of rich-neighbor edge-coloring as a weakening of strong edge-coloring. A proper <span><math><mi>k</mi></math></span>-edge-coloring <span><math><mi>ϕ</mi></math></span> is a rich-neighbor <span><math><mi>k</mi></math></span>-coloring if each non-isolated edge is adjacent to at least one rich edge. Petruševski and Škrekovski (2024) conjectured that every connected subcubic graph admits a rich-neighbor 5-coloring except for <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. We show that if <span><math><mi>G</mi></math></span> is a subcubic graph, then <ul><li><span>•</span><span><div>[(1)] if <span><math><mrow><mi>m</mi><mi>a</mi><mi>d</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo><</mo><mfrac><mrow><mn>36</mn></mrow><mrow><mn>13</mn></mrow></mfrac></mrow></math></span>, then <span><math><mi>G</mi></math></span> has a rich-neighbor 6-coloring; and</div></span></li><li><span>•</span><span><div>[(2)] if <span><math><mi>G</mi></math></span> is claw-free, then <span><math><mi>G</mi></math></span> has a rich-neighbor 6-coloring.</div></span></li></ul></div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"378 \",\"pages\":\"Pages 538-546\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004858\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004858","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On the rich-neighbor edge-coloring of sparse graphs
Let be a proper edge-coloring of a graph . An edge is rich if the edges adjacent to receive distinct colors. In particular, a pendant edge and an isolated edge are both rich. Petruševski and Škrekovski (2024) introduced the concept of rich-neighbor edge-coloring as a weakening of strong edge-coloring. A proper -edge-coloring is a rich-neighbor -coloring if each non-isolated edge is adjacent to at least one rich edge. Petruševski and Škrekovski (2024) conjectured that every connected subcubic graph admits a rich-neighbor 5-coloring except for . We show that if is a subcubic graph, then
•
[(1)] if , then has a rich-neighbor 6-coloring; and
•
[(2)] if is claw-free, then has a rich-neighbor 6-coloring.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.