用于红外小目标探测的物理通知非均匀特征瞄准网络

IF 3.4 3区 物理与天体物理 Q2 INSTRUMENTS & INSTRUMENTATION
Wenhao Wu , Youlin Gu , Chen Lei , Fanhao Meng , Xi Zhang , Yihua Hu
{"title":"用于红外小目标探测的物理通知非均匀特征瞄准网络","authors":"Wenhao Wu ,&nbsp;Youlin Gu ,&nbsp;Chen Lei ,&nbsp;Fanhao Meng ,&nbsp;Xi Zhang ,&nbsp;Yihua Hu","doi":"10.1016/j.infrared.2025.106082","DOIUrl":null,"url":null,"abstract":"<div><div>Infrared small target detection models face a fundamental challenge: their CNN-based backbone applies spatially invariant processing to inherently heterogeneous scenes: targets manifest as concentrated Gaussian-like energy distributions while backgrounds exhibit diffuse patterns from atmospheric scattering. This architectural mismatch causes progressive target feature dilution and degraded localization accuracy in deep networks. We propose Gaussian Recalibration Attention Blocks (GRABs), a physics-informed adaptive convolution framework that transforms static kernels into content-aware operators. GRABs comprise three synergistic components: (1) Feature Decomposition (FD) that separates target and background features through spatially-adaptive bandpass operations, (2) Gaussian Spatial Parameter Predictor (GSPP) that reconstitutes standard convolutions as position-dependent matched filters, and (3) Object Perception Attention (OPA) that provides spatial control signals including probabilistic target presence maps, sub-pixel centroid localization, and anisotropic shape descriptors. We integrate GRABs into the Non-uniform Distinctive Targeting Network (NUDTNet) as the feature extraction backbone, complemented by a Cross-layer Relation Transformer (CLRT) for multi-scale feature fusion. Extensive experiments demonstrate that NUDTNet achieves better performance on NUDT-SIRST, NUAA-SIRST, and IRSTD-1K datasets, validating the effectiveness of incorporating physical imaging principles into neural architectures for infrared small target detection.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"151 ","pages":"Article 106082"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUDTNet: Physics informed Non-uniform Distinctive Targeting Network for infrared small target detection\",\"authors\":\"Wenhao Wu ,&nbsp;Youlin Gu ,&nbsp;Chen Lei ,&nbsp;Fanhao Meng ,&nbsp;Xi Zhang ,&nbsp;Yihua Hu\",\"doi\":\"10.1016/j.infrared.2025.106082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Infrared small target detection models face a fundamental challenge: their CNN-based backbone applies spatially invariant processing to inherently heterogeneous scenes: targets manifest as concentrated Gaussian-like energy distributions while backgrounds exhibit diffuse patterns from atmospheric scattering. This architectural mismatch causes progressive target feature dilution and degraded localization accuracy in deep networks. We propose Gaussian Recalibration Attention Blocks (GRABs), a physics-informed adaptive convolution framework that transforms static kernels into content-aware operators. GRABs comprise three synergistic components: (1) Feature Decomposition (FD) that separates target and background features through spatially-adaptive bandpass operations, (2) Gaussian Spatial Parameter Predictor (GSPP) that reconstitutes standard convolutions as position-dependent matched filters, and (3) Object Perception Attention (OPA) that provides spatial control signals including probabilistic target presence maps, sub-pixel centroid localization, and anisotropic shape descriptors. We integrate GRABs into the Non-uniform Distinctive Targeting Network (NUDTNet) as the feature extraction backbone, complemented by a Cross-layer Relation Transformer (CLRT) for multi-scale feature fusion. Extensive experiments demonstrate that NUDTNet achieves better performance on NUDT-SIRST, NUAA-SIRST, and IRSTD-1K datasets, validating the effectiveness of incorporating physical imaging principles into neural architectures for infrared small target detection.</div></div>\",\"PeriodicalId\":13549,\"journal\":{\"name\":\"Infrared Physics & Technology\",\"volume\":\"151 \",\"pages\":\"Article 106082\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrared Physics & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350449525003755\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449525003755","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

红外小目标检测模型面临着一个根本性的挑战:基于cnn的主干对异构场景进行空间不变处理:目标表现为集中的类高斯能量分布,而背景表现为大气散射的漫射模式。这种结构上的不匹配导致深度网络中目标特征的逐渐稀释和定位精度的降低。我们提出高斯重新校准注意块(GRABs),这是一种物理信息自适应卷积框架,可将静态核转换为内容感知算子。抓取包括三个协同组件:(1)特征分解(FD),通过空间自适应带通操作分离目标和背景特征;(2)高斯空间参数预测器(GSPP),将标准卷积重构为位置相关匹配滤波器;(3)对象感知注意(OPA),提供空间控制信号,包括概率目标存在图、亚像素质心定位和各向异性形状描述符。我们将抓取图像整合到非均匀特征目标网络(NUDTNet)中作为特征提取主干,并辅以跨层关系转换器(CLRT)进行多尺度特征融合。大量实验表明,NUDTNet在NUDT-SIRST、NUAA-SIRST和IRSTD-1K数据集上取得了更好的性能,验证了将物理成像原理纳入红外小目标检测神经网络架构的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NUDTNet: Physics informed Non-uniform Distinctive Targeting Network for infrared small target detection
Infrared small target detection models face a fundamental challenge: their CNN-based backbone applies spatially invariant processing to inherently heterogeneous scenes: targets manifest as concentrated Gaussian-like energy distributions while backgrounds exhibit diffuse patterns from atmospheric scattering. This architectural mismatch causes progressive target feature dilution and degraded localization accuracy in deep networks. We propose Gaussian Recalibration Attention Blocks (GRABs), a physics-informed adaptive convolution framework that transforms static kernels into content-aware operators. GRABs comprise three synergistic components: (1) Feature Decomposition (FD) that separates target and background features through spatially-adaptive bandpass operations, (2) Gaussian Spatial Parameter Predictor (GSPP) that reconstitutes standard convolutions as position-dependent matched filters, and (3) Object Perception Attention (OPA) that provides spatial control signals including probabilistic target presence maps, sub-pixel centroid localization, and anisotropic shape descriptors. We integrate GRABs into the Non-uniform Distinctive Targeting Network (NUDTNet) as the feature extraction backbone, complemented by a Cross-layer Relation Transformer (CLRT) for multi-scale feature fusion. Extensive experiments demonstrate that NUDTNet achieves better performance on NUDT-SIRST, NUAA-SIRST, and IRSTD-1K datasets, validating the effectiveness of incorporating physical imaging principles into neural architectures for infrared small target detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
12.10%
发文量
400
审稿时长
67 days
期刊介绍: The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region. Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine. Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信