关于Birch-Erdős和m个分区定理的注意事项

IF 0.7 3区 数学 Q3 MATHEMATICS
Yuchen Ding , Honghu Liu , Zi Wang
{"title":"关于Birch-Erdős和m个分区定理的注意事项","authors":"Yuchen Ding ,&nbsp;Honghu Liu ,&nbsp;Zi Wang","doi":"10.1016/j.jnt.2025.07.009","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>&gt;</mo><mn>1</mn></math></span> be two relatively prime integers and <span><math><mi>N</mi></math></span> the set of nonnegative integers. Let <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be the number of different expressions of <em>n</em> written as a sum of distinct terms taken from <span><math><mo>{</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>:</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>∈</mo><mi>N</mi><mo>}</mo></math></span>. Erdős conjectured and then Birch proved that <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mn>1</mn></math></span> provided that <em>n</em> is sufficiently large. In this note, for all sufficiently large number <em>n</em> we prove<span><span><span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn><mi>log</mi><mo>⁡</mo><mi>p</mi><mi>log</mi><mo>⁡</mo><mi>q</mi></mrow></mfrac><mo>(</mo><mn>1</mn><mo>+</mo><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow></msup><mo>.</mo></math></span></span></span> We also show that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. Additionally, we will point out the relations between <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and <em>m</em>-ary partitions.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 910-928"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on a theorem of Birch–Erdős and m-ary partitions\",\"authors\":\"Yuchen Ding ,&nbsp;Honghu Liu ,&nbsp;Zi Wang\",\"doi\":\"10.1016/j.jnt.2025.07.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>&gt;</mo><mn>1</mn></math></span> be two relatively prime integers and <span><math><mi>N</mi></math></span> the set of nonnegative integers. Let <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be the number of different expressions of <em>n</em> written as a sum of distinct terms taken from <span><math><mo>{</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>α</mi></mrow></msup><msup><mrow><mi>q</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>:</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>∈</mo><mi>N</mi><mo>}</mo></math></span>. Erdős conjectured and then Birch proved that <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mn>1</mn></math></span> provided that <em>n</em> is sufficiently large. In this note, for all sufficiently large number <em>n</em> we prove<span><span><span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn><mi>log</mi><mo>⁡</mo><mi>p</mi><mi>log</mi><mo>⁡</mo><mi>q</mi></mrow></mfrac><mo>(</mo><mn>1</mn><mo>+</mo><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow></msup><mo>.</mo></math></span></span></span> We also show that <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. Additionally, we will point out the relations between <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and <em>m</em>-ary partitions.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"279 \",\"pages\":\"Pages 910-928\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25002100\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002100","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设p,q>;1为两个相对素数,N为非负整数的集合。设fp,q(n)是n的不同表达式的个数,表示为{pαqβ:α,β∈n}中不同项的和。Erdős推测,然后Birch证明,只要n足够大,fp,q(n)≥1。在本文中,对于所有足够大的数n,我们证明了q(n)=2(log (n))22log (plg)) q(1+O(log (log)) /log (n))。我们还证明了limn→∞(f2,q(n+1)/f2,q(n)=1。此外,我们将指出f2,q(n)和m-ary分区之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on a theorem of Birch–Erdős and m-ary partitions
Let p,q>1 be two relatively prime integers and N the set of nonnegative integers. Let fp,q(n) be the number of different expressions of n written as a sum of distinct terms taken from {pαqβ:α,βN}. Erdős conjectured and then Birch proved that fp,q(n)1 provided that n is sufficiently large. In this note, for all sufficiently large number n we provefp,q(n)=2(logn)22logplogq(1+O(loglogn/logn)). We also show that limnf2,q(n+1)/f2,q(n)=1. Additionally, we will point out the relations between f2,q(n) and m-ary partitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信