几个素数的哥德巴赫表示

IF 0.7 3区 数学 Q3 MATHEMATICS
Thi Thu Nguyen
{"title":"几个素数的哥德巴赫表示","authors":"Thi Thu Nguyen","doi":"10.1016/j.jnt.2025.07.008","DOIUrl":null,"url":null,"abstract":"<div><div>We study an asymptotic formula for average orders of Goldbach representations of an integer as the sum of <em>k</em> primes. We extend the existing result for <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> to a general <em>k</em> and obtain a better error term for all <em>k</em> larger than 3. Moreover, we prove an equivalence between the Riemann Hypothesis and a good average order in this case.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"279 ","pages":"Pages 858-877"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Goldbach representations with several primes\",\"authors\":\"Thi Thu Nguyen\",\"doi\":\"10.1016/j.jnt.2025.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study an asymptotic formula for average orders of Goldbach representations of an integer as the sum of <em>k</em> primes. We extend the existing result for <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> to a general <em>k</em> and obtain a better error term for all <em>k</em> larger than 3. Moreover, we prove an equivalence between the Riemann Hypothesis and a good average order in this case.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"279 \",\"pages\":\"Pages 858-877\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25002136\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002136","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了整数作为k个素数和的哥德巴赫表示的平均阶数的渐近公式。我们将已有的k=2的结果推广到一般的k,并对所有大于3的k得到了更好的误差项。此外,在这种情况下,我们证明了黎曼假设与良好平均阶之间的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Goldbach representations with several primes
We study an asymptotic formula for average orders of Goldbach representations of an integer as the sum of k primes. We extend the existing result for k=2 to a general k and obtain a better error term for all k larger than 3. Moreover, we prove an equivalence between the Riemann Hypothesis and a good average order in this case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信