Yangyang Ma , Zhichao Jiao , Zhiyuan Huang , Qing Zhou , Tiange Huang , Xing Ran , Zhe Wang , Longshi Qiu , Haishan Teng , Xiaojiang Lu , Zhao Shen , Haifeng Wang
{"title":"TiAlNbN薄膜的抗氧化性探讨:纳米孔调控和裂纹抑制机制","authors":"Yangyang Ma , Zhichao Jiao , Zhiyuan Huang , Qing Zhou , Tiange Huang , Xing Ran , Zhe Wang , Longshi Qiu , Haishan Teng , Xiaojiang Lu , Zhao Shen , Haifeng Wang","doi":"10.1016/j.corsci.2025.113273","DOIUrl":null,"url":null,"abstract":"<div><div>The high-temperature service environment places stringent demands on the oxidation resistance of traditional TiAlN films, which is, however, limited by severe poring and cracking on the oxidized surface. In this paper, the oxidation behavior and underlying mechanisms of the films following Nb alloying were systematically investigated through isothermal oxidation tests and density-functional theory (DFT) calculations. The results demonstrate that Nb addition effectively suppresses the anatase-to-rutile (a-TiO<sub>2</sub> → r-TiO<sub>2</sub>) phase transformation, thereby preventing pore agglomeration. Furthermore, Nb regulates the diffusion kinetics of Al and Ti while occupying grain boundaries to impede elemental diffusion, collectively decelerating the oxidation rate and optimizing the stratified oxide structure. The optimized layer stratification alleviates the stress concentration inside the oxide layer by forming regular distribution of tiny holes, which avoids the generation of cracks and improves the long-term stability of the film. This work offers a comprehensive analysis into the internal mechanism of refractory element alloying on the oxidation behavior of TiAlN-based films.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"257 ","pages":"Article 113273"},"PeriodicalIF":7.4000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration on the oxidation resistance of TiAlNbN films: Mechanisms of nanopore regulation and crack suppression\",\"authors\":\"Yangyang Ma , Zhichao Jiao , Zhiyuan Huang , Qing Zhou , Tiange Huang , Xing Ran , Zhe Wang , Longshi Qiu , Haishan Teng , Xiaojiang Lu , Zhao Shen , Haifeng Wang\",\"doi\":\"10.1016/j.corsci.2025.113273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The high-temperature service environment places stringent demands on the oxidation resistance of traditional TiAlN films, which is, however, limited by severe poring and cracking on the oxidized surface. In this paper, the oxidation behavior and underlying mechanisms of the films following Nb alloying were systematically investigated through isothermal oxidation tests and density-functional theory (DFT) calculations. The results demonstrate that Nb addition effectively suppresses the anatase-to-rutile (a-TiO<sub>2</sub> → r-TiO<sub>2</sub>) phase transformation, thereby preventing pore agglomeration. Furthermore, Nb regulates the diffusion kinetics of Al and Ti while occupying grain boundaries to impede elemental diffusion, collectively decelerating the oxidation rate and optimizing the stratified oxide structure. The optimized layer stratification alleviates the stress concentration inside the oxide layer by forming regular distribution of tiny holes, which avoids the generation of cracks and improves the long-term stability of the film. This work offers a comprehensive analysis into the internal mechanism of refractory element alloying on the oxidation behavior of TiAlN-based films.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"257 \",\"pages\":\"Article 113273\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X25006006\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25006006","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploration on the oxidation resistance of TiAlNbN films: Mechanisms of nanopore regulation and crack suppression
The high-temperature service environment places stringent demands on the oxidation resistance of traditional TiAlN films, which is, however, limited by severe poring and cracking on the oxidized surface. In this paper, the oxidation behavior and underlying mechanisms of the films following Nb alloying were systematically investigated through isothermal oxidation tests and density-functional theory (DFT) calculations. The results demonstrate that Nb addition effectively suppresses the anatase-to-rutile (a-TiO2 → r-TiO2) phase transformation, thereby preventing pore agglomeration. Furthermore, Nb regulates the diffusion kinetics of Al and Ti while occupying grain boundaries to impede elemental diffusion, collectively decelerating the oxidation rate and optimizing the stratified oxide structure. The optimized layer stratification alleviates the stress concentration inside the oxide layer by forming regular distribution of tiny holes, which avoids the generation of cracks and improves the long-term stability of the film. This work offers a comprehensive analysis into the internal mechanism of refractory element alloying on the oxidation behavior of TiAlN-based films.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.