TiAlNbN薄膜的抗氧化性探讨:纳米孔调控和裂纹抑制机制

IF 7.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yangyang Ma , Zhichao Jiao , Zhiyuan Huang , Qing Zhou , Tiange Huang , Xing Ran , Zhe Wang , Longshi Qiu , Haishan Teng , Xiaojiang Lu , Zhao Shen , Haifeng Wang
{"title":"TiAlNbN薄膜的抗氧化性探讨:纳米孔调控和裂纹抑制机制","authors":"Yangyang Ma ,&nbsp;Zhichao Jiao ,&nbsp;Zhiyuan Huang ,&nbsp;Qing Zhou ,&nbsp;Tiange Huang ,&nbsp;Xing Ran ,&nbsp;Zhe Wang ,&nbsp;Longshi Qiu ,&nbsp;Haishan Teng ,&nbsp;Xiaojiang Lu ,&nbsp;Zhao Shen ,&nbsp;Haifeng Wang","doi":"10.1016/j.corsci.2025.113273","DOIUrl":null,"url":null,"abstract":"<div><div>The high-temperature service environment places stringent demands on the oxidation resistance of traditional TiAlN films, which is, however, limited by severe poring and cracking on the oxidized surface. In this paper, the oxidation behavior and underlying mechanisms of the films following Nb alloying were systematically investigated through isothermal oxidation tests and density-functional theory (DFT) calculations. The results demonstrate that Nb addition effectively suppresses the anatase-to-rutile (a-TiO<sub>2</sub> → r-TiO<sub>2</sub>) phase transformation, thereby preventing pore agglomeration. Furthermore, Nb regulates the diffusion kinetics of Al and Ti while occupying grain boundaries to impede elemental diffusion, collectively decelerating the oxidation rate and optimizing the stratified oxide structure. The optimized layer stratification alleviates the stress concentration inside the oxide layer by forming regular distribution of tiny holes, which avoids the generation of cracks and improves the long-term stability of the film. This work offers a comprehensive analysis into the internal mechanism of refractory element alloying on the oxidation behavior of TiAlN-based films.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"257 ","pages":"Article 113273"},"PeriodicalIF":7.4000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration on the oxidation resistance of TiAlNbN films: Mechanisms of nanopore regulation and crack suppression\",\"authors\":\"Yangyang Ma ,&nbsp;Zhichao Jiao ,&nbsp;Zhiyuan Huang ,&nbsp;Qing Zhou ,&nbsp;Tiange Huang ,&nbsp;Xing Ran ,&nbsp;Zhe Wang ,&nbsp;Longshi Qiu ,&nbsp;Haishan Teng ,&nbsp;Xiaojiang Lu ,&nbsp;Zhao Shen ,&nbsp;Haifeng Wang\",\"doi\":\"10.1016/j.corsci.2025.113273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The high-temperature service environment places stringent demands on the oxidation resistance of traditional TiAlN films, which is, however, limited by severe poring and cracking on the oxidized surface. In this paper, the oxidation behavior and underlying mechanisms of the films following Nb alloying were systematically investigated through isothermal oxidation tests and density-functional theory (DFT) calculations. The results demonstrate that Nb addition effectively suppresses the anatase-to-rutile (a-TiO<sub>2</sub> → r-TiO<sub>2</sub>) phase transformation, thereby preventing pore agglomeration. Furthermore, Nb regulates the diffusion kinetics of Al and Ti while occupying grain boundaries to impede elemental diffusion, collectively decelerating the oxidation rate and optimizing the stratified oxide structure. The optimized layer stratification alleviates the stress concentration inside the oxide layer by forming regular distribution of tiny holes, which avoids the generation of cracks and improves the long-term stability of the film. This work offers a comprehensive analysis into the internal mechanism of refractory element alloying on the oxidation behavior of TiAlN-based films.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"257 \",\"pages\":\"Article 113273\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X25006006\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25006006","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高温使用环境对传统TiAlN薄膜的抗氧化性能提出了苛刻的要求,但其氧化表面存在严重的孔隙和开裂,限制了其抗氧化性能。本文通过等温氧化试验和密度泛函理论(DFT)计算,系统地研究了铌合金化后薄膜的氧化行为和潜在机制。结果表明,Nb的加入能有效抑制锐钛矿→金红石(a-TiO2→r-TiO2)的相变,从而防止孔隙团聚。Nb在占据晶界的同时调节Al和Ti的扩散动力学,阻碍元素扩散,共同减缓氧化速率,优化氧化层结构。优化后的层状分层通过形成规则分布的微孔,缓解了氧化层内部的应力集中,避免了裂纹的产生,提高了薄膜的长期稳定性。本文对难熔元素合金化对tialn基薄膜氧化行为的内在机理进行了全面的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploration on the oxidation resistance of TiAlNbN films: Mechanisms of nanopore regulation and crack suppression
The high-temperature service environment places stringent demands on the oxidation resistance of traditional TiAlN films, which is, however, limited by severe poring and cracking on the oxidized surface. In this paper, the oxidation behavior and underlying mechanisms of the films following Nb alloying were systematically investigated through isothermal oxidation tests and density-functional theory (DFT) calculations. The results demonstrate that Nb addition effectively suppresses the anatase-to-rutile (a-TiO2 → r-TiO2) phase transformation, thereby preventing pore agglomeration. Furthermore, Nb regulates the diffusion kinetics of Al and Ti while occupying grain boundaries to impede elemental diffusion, collectively decelerating the oxidation rate and optimizing the stratified oxide structure. The optimized layer stratification alleviates the stress concentration inside the oxide layer by forming regular distribution of tiny holes, which avoids the generation of cracks and improves the long-term stability of the film. This work offers a comprehensive analysis into the internal mechanism of refractory element alloying on the oxidation behavior of TiAlN-based films.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Corrosion Science
Corrosion Science 工程技术-材料科学:综合
CiteScore
13.60
自引率
18.10%
发文量
763
审稿时长
46 days
期刊介绍: Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies. This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信