多项式失效率分布的后验概率密度函数的渐近形式

IF 4.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Serguei Maximov , Jose G. Tirado-Serrato , Alfredo Sanchez
{"title":"多项式失效率分布的后验概率密度函数的渐近形式","authors":"Serguei Maximov ,&nbsp;Jose G. Tirado-Serrato ,&nbsp;Alfredo Sanchez","doi":"10.1016/j.apm.2025.116389","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we derive an asymptotic form of the posterior distribution density for parameters of distributions with polynomial failure rates, using a Bayesian approach with a weakly informative prior. The <em>n</em>-dimensional credible region for the distribution parameters is estimated in general form based on the obtained posterior distribution. The order of the polynomial hazard function is determined using two complementary principles: the optimal order minimizes the size of the credible region, while the most probable order is inferred from the structure of the posterior distribution. Parameter estimates are obtained in two ways: as statistical means via the partition function, and as most probable values. The system lifetime is evaluated for both the expected and most probable parameter values. The proposed models are validated for goodness of fit using several examples with data sets from the literature.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"150 ","pages":"Article 116389"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the asymptotic form of the posterior probability density function for distributions with polynomial failure rates\",\"authors\":\"Serguei Maximov ,&nbsp;Jose G. Tirado-Serrato ,&nbsp;Alfredo Sanchez\",\"doi\":\"10.1016/j.apm.2025.116389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we derive an asymptotic form of the posterior distribution density for parameters of distributions with polynomial failure rates, using a Bayesian approach with a weakly informative prior. The <em>n</em>-dimensional credible region for the distribution parameters is estimated in general form based on the obtained posterior distribution. The order of the polynomial hazard function is determined using two complementary principles: the optimal order minimizes the size of the credible region, while the most probable order is inferred from the structure of the posterior distribution. Parameter estimates are obtained in two ways: as statistical means via the partition function, and as most probable values. The system lifetime is evaluated for both the expected and most probable parameter values. The proposed models are validated for goodness of fit using several examples with data sets from the literature.</div></div>\",\"PeriodicalId\":50980,\"journal\":{\"name\":\"Applied Mathematical Modelling\",\"volume\":\"150 \",\"pages\":\"Article 116389\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0307904X25004639\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X25004639","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文利用弱信息先验贝叶斯方法,导出了多项式失效率分布参数的后验分布密度的渐近形式。根据得到的后验分布,以一般形式估计分布参数的n维可信区域。多项式风险函数的阶数是用两个互补的原则确定的:最优阶数使可信区域的大小最小化,而最可能的阶数是从后验分布的结构中推断出来的。参数估计通过两种方式获得:通过配分函数作为统计平均值,以及作为最可能值。系统生命周期根据预期和最可能的参数值进行评估。使用文献中的数据集的几个例子验证了所提出的模型的拟合优度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the asymptotic form of the posterior probability density function for distributions with polynomial failure rates
In this paper, we derive an asymptotic form of the posterior distribution density for parameters of distributions with polynomial failure rates, using a Bayesian approach with a weakly informative prior. The n-dimensional credible region for the distribution parameters is estimated in general form based on the obtained posterior distribution. The order of the polynomial hazard function is determined using two complementary principles: the optimal order minimizes the size of the credible region, while the most probable order is inferred from the structure of the posterior distribution. Parameter estimates are obtained in two ways: as statistical means via the partition function, and as most probable values. The system lifetime is evaluated for both the expected and most probable parameter values. The proposed models are validated for goodness of fit using several examples with data sets from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Modelling
Applied Mathematical Modelling 数学-工程:综合
CiteScore
9.80
自引率
8.00%
发文量
508
审稿时长
43 days
期刊介绍: Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged. This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering. Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信