Lingyun Lu , Yueren Xu , Jiacheng Tang , Guiming Hu
{"title":"2024 MW 7.4花莲地震诱发同震滑坡和液化的高分辨率卫星图像分析","authors":"Lingyun Lu , Yueren Xu , Jiacheng Tang , Guiming Hu","doi":"10.1016/j.eqrea.2024.100356","DOIUrl":null,"url":null,"abstract":"<div><div>Rapidly obtaining spatial distribution maps of secondary disasters triggered by strong earthquakes is crucial for understanding the disaster-causing processes in the earthquake hazard chain and formulating effective emergency response measures and post-disaster reconstruction plans. On April 3, 2024, a <em>M</em><sub>W</sub> 7.4 earthquake struck offshore east of Hualien, Taiwan, China, which triggered numerous coseismic landslides in bedrock mountain regions and severe soil liquefaction in coastal areas, resulting in significant economic losses. This study utilized post-earthquake emergency data from China's high-resolution optical satellite imagery and applied visual interpretation method to establish a partial database of secondary disasters triggered by the 2024 Hualien earthquake. A total of 5 348 coseismic landslides were identified, which were primarily distributed along the eastern slopes of the Central Mountain Range watersheds. In high mountain valleys, these landslides mainly manifest as localized bedrock collapses or slope debris flows, causing extensive damage to highways and tourism facilities. Their distribution partially overlaps with the landslide concentration zones triggered by the 1999 Chi-Chi earthquake. Additionally, 6 040 soil liquefaction events were interpreted, predominantly in the Hualien Port area and the lowland valleys of the Hualien River and concentrated within the IX-intensity zone. Widespread surface subsidence and sand ejections characterized soil liquefaction. Verified against local field investigation data in Taiwan, rapid imaging through post-earthquake remote sensing data can effectively assess the distribution of coseismic landslides and soil liquefaction within high-intensity zones. This study provides efficient and reliable data for earthquake disaster response. Moreover, the results are critical for seismic disaster mitigation in high mountain valleys and coastal lowlands.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"5 3","pages":"Article 100356"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-resolution satellite imagery analysis of coseismic landslides and liquefaction induced by the 2024 MW 7.4 Hualien earthquake, Taiwan, China\",\"authors\":\"Lingyun Lu , Yueren Xu , Jiacheng Tang , Guiming Hu\",\"doi\":\"10.1016/j.eqrea.2024.100356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rapidly obtaining spatial distribution maps of secondary disasters triggered by strong earthquakes is crucial for understanding the disaster-causing processes in the earthquake hazard chain and formulating effective emergency response measures and post-disaster reconstruction plans. On April 3, 2024, a <em>M</em><sub>W</sub> 7.4 earthquake struck offshore east of Hualien, Taiwan, China, which triggered numerous coseismic landslides in bedrock mountain regions and severe soil liquefaction in coastal areas, resulting in significant economic losses. This study utilized post-earthquake emergency data from China's high-resolution optical satellite imagery and applied visual interpretation method to establish a partial database of secondary disasters triggered by the 2024 Hualien earthquake. A total of 5 348 coseismic landslides were identified, which were primarily distributed along the eastern slopes of the Central Mountain Range watersheds. In high mountain valleys, these landslides mainly manifest as localized bedrock collapses or slope debris flows, causing extensive damage to highways and tourism facilities. Their distribution partially overlaps with the landslide concentration zones triggered by the 1999 Chi-Chi earthquake. Additionally, 6 040 soil liquefaction events were interpreted, predominantly in the Hualien Port area and the lowland valleys of the Hualien River and concentrated within the IX-intensity zone. Widespread surface subsidence and sand ejections characterized soil liquefaction. Verified against local field investigation data in Taiwan, rapid imaging through post-earthquake remote sensing data can effectively assess the distribution of coseismic landslides and soil liquefaction within high-intensity zones. This study provides efficient and reliable data for earthquake disaster response. Moreover, the results are critical for seismic disaster mitigation in high mountain valleys and coastal lowlands.</div></div>\",\"PeriodicalId\":100384,\"journal\":{\"name\":\"Earthquake Research Advances\",\"volume\":\"5 3\",\"pages\":\"Article 100356\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Research Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772467024000824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Research Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772467024000824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-resolution satellite imagery analysis of coseismic landslides and liquefaction induced by the 2024 MW 7.4 Hualien earthquake, Taiwan, China
Rapidly obtaining spatial distribution maps of secondary disasters triggered by strong earthquakes is crucial for understanding the disaster-causing processes in the earthquake hazard chain and formulating effective emergency response measures and post-disaster reconstruction plans. On April 3, 2024, a MW 7.4 earthquake struck offshore east of Hualien, Taiwan, China, which triggered numerous coseismic landslides in bedrock mountain regions and severe soil liquefaction in coastal areas, resulting in significant economic losses. This study utilized post-earthquake emergency data from China's high-resolution optical satellite imagery and applied visual interpretation method to establish a partial database of secondary disasters triggered by the 2024 Hualien earthquake. A total of 5 348 coseismic landslides were identified, which were primarily distributed along the eastern slopes of the Central Mountain Range watersheds. In high mountain valleys, these landslides mainly manifest as localized bedrock collapses or slope debris flows, causing extensive damage to highways and tourism facilities. Their distribution partially overlaps with the landslide concentration zones triggered by the 1999 Chi-Chi earthquake. Additionally, 6 040 soil liquefaction events were interpreted, predominantly in the Hualien Port area and the lowland valleys of the Hualien River and concentrated within the IX-intensity zone. Widespread surface subsidence and sand ejections characterized soil liquefaction. Verified against local field investigation data in Taiwan, rapid imaging through post-earthquake remote sensing data can effectively assess the distribution of coseismic landslides and soil liquefaction within high-intensity zones. This study provides efficient and reliable data for earthquake disaster response. Moreover, the results are critical for seismic disaster mitigation in high mountain valleys and coastal lowlands.