P4-free图中的完全独立生成树

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jun Yuan , Jiya Hao , Aixia Liu , Shan Liu , Shuchang Chai , Shangwei Lin
{"title":"P4-free图中的完全独立生成树","authors":"Jun Yuan ,&nbsp;Jiya Hao ,&nbsp;Aixia Liu ,&nbsp;Shan Liu ,&nbsp;Shuchang Chai ,&nbsp;Shangwei Lin","doi":"10.1016/j.dam.2025.08.048","DOIUrl":null,"url":null,"abstract":"<div><div>Hasunuma has conjectured that every <span><math><mrow><mn>2</mn><mi>k</mi></mrow></math></span>-connected graph admits <span><math><mi>k</mi></math></span> completely independent spanning trees. Pai et al. showed the conjecture is true for complete graphs, complete bipartite graphs and complete tripartite graphs, all of which are <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free. Chen et al. showed there exist two completely independent spanning trees in every 4-connected <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graph. In this paper, we further discuss the completely independent spanning trees in both complete multipartite graphs and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs. Let <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></msub></math></span> be a complete <span><math><mi>m</mi></math></span>-partite graph, where <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>.</mo></mrow></math></span> We first prove that <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></msub></math></span> contains <span><math><mrow><mo>min</mo><mrow><mo>{</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></munderover><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>⌋</mo></mrow><mo>}</mo></mrow></mrow></math></span> completely independent spanning trees. This implies that every <span><math><mrow><mn>2</mn><mi>k</mi></mrow></math></span>-connected complete <span><math><mi>m</mi></math></span>-partite graph admits <span><math><mi>k</mi></math></span> completely independent spanning trees if its order is at least <span><math><mrow><mn>3</mn><mi>k</mi><mo>.</mo></mrow></math></span> We further provide the upper and lower bounds of the maximum number of completely independent spanning trees in complete <span><math><mi>m</mi></math></span>-partite graphs, and demonstrate that these bounds are tight. Second, we show there exist <span><math><mi>k</mi></math></span> completely independent spanning trees in every <span><math><mrow><mn>2</mn><mi>k</mi></mrow></math></span>-connected <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graph of order at least <span><math><mrow><mn>3</mn><mi>k</mi><mo>.</mo></mrow></math></span> Finally, we construct a kind of minimum <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs that contain <span><math><mi>m</mi></math></span> completely independent spanning trees.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 573-585"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The completely independent spanning trees in P4-free graphs\",\"authors\":\"Jun Yuan ,&nbsp;Jiya Hao ,&nbsp;Aixia Liu ,&nbsp;Shan Liu ,&nbsp;Shuchang Chai ,&nbsp;Shangwei Lin\",\"doi\":\"10.1016/j.dam.2025.08.048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hasunuma has conjectured that every <span><math><mrow><mn>2</mn><mi>k</mi></mrow></math></span>-connected graph admits <span><math><mi>k</mi></math></span> completely independent spanning trees. Pai et al. showed the conjecture is true for complete graphs, complete bipartite graphs and complete tripartite graphs, all of which are <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free. Chen et al. showed there exist two completely independent spanning trees in every 4-connected <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graph. In this paper, we further discuss the completely independent spanning trees in both complete multipartite graphs and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs. Let <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></msub></math></span> be a complete <span><math><mi>m</mi></math></span>-partite graph, where <span><math><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>.</mo></mrow></math></span> We first prove that <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></msub></math></span> contains <span><math><mrow><mo>min</mo><mrow><mo>{</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></munderover><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>⌋</mo></mrow><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msub><mrow><mi>n</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>⌋</mo></mrow><mo>}</mo></mrow></mrow></math></span> completely independent spanning trees. This implies that every <span><math><mrow><mn>2</mn><mi>k</mi></mrow></math></span>-connected complete <span><math><mi>m</mi></math></span>-partite graph admits <span><math><mi>k</mi></math></span> completely independent spanning trees if its order is at least <span><math><mrow><mn>3</mn><mi>k</mi><mo>.</mo></mrow></math></span> We further provide the upper and lower bounds of the maximum number of completely independent spanning trees in complete <span><math><mi>m</mi></math></span>-partite graphs, and demonstrate that these bounds are tight. Second, we show there exist <span><math><mi>k</mi></math></span> completely independent spanning trees in every <span><math><mrow><mn>2</mn><mi>k</mi></mrow></math></span>-connected <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graph of order at least <span><math><mrow><mn>3</mn><mi>k</mi><mo>.</mo></mrow></math></span> Finally, we construct a kind of minimum <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs that contain <span><math><mi>m</mi></math></span> completely independent spanning trees.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"377 \",\"pages\":\"Pages 573-585\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004883\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004883","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Hasunuma推测,每个2k连通图都有k棵完全独立的生成树。Pai等证明了这个猜想对于完全图、完全二部图和完全三部图都成立,它们都是P4-free的。Chen等证明了在每一个4连通P4-free图中存在两棵完全独立的生成树。本文进一步讨论了完全多部图和p4自由图的完全独立生成树。设Kn1,n2,…,nm为完全m部图,其中n1≤n2≤⋯≤nm。首先证明了Kn1,n2,…,nm包含min{⌊12∑i=1m−1ni⌋,⌊13∑i=1mni⌋}完全独立的生成树。这意味着,每一个2k连通的完全m部图,如果其阶数至少为3k,则允许有k棵完全独立的生成树。我们进一步给出了完全m部图中完全独立生成树的最大数目的上界和下界,并证明了这些上界是紧的。其次,我们证明了在每一个至少3k阶的2k连通p4自由图中存在k个完全独立的生成树。最后,构造了一类包含m棵完全独立生成树的最小p4自由图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The completely independent spanning trees in P4-free graphs
Hasunuma has conjectured that every 2k-connected graph admits k completely independent spanning trees. Pai et al. showed the conjecture is true for complete graphs, complete bipartite graphs and complete tripartite graphs, all of which are P4-free. Chen et al. showed there exist two completely independent spanning trees in every 4-connected P4-free graph. In this paper, we further discuss the completely independent spanning trees in both complete multipartite graphs and P4-free graphs. Let Kn1,n2,,nm be a complete m-partite graph, where n1n2nm. We first prove that Kn1,n2,,nm contains min{12i=1m1ni,13i=1mni} completely independent spanning trees. This implies that every 2k-connected complete m-partite graph admits k completely independent spanning trees if its order is at least 3k. We further provide the upper and lower bounds of the maximum number of completely independent spanning trees in complete m-partite graphs, and demonstrate that these bounds are tight. Second, we show there exist k completely independent spanning trees in every 2k-connected P4-free graph of order at least 3k. Finally, we construct a kind of minimum P4-free graphs that contain m completely independent spanning trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信