可编程自动化低成本物联网水采样器

IF 2.1 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Emmanuel Deleon , Ansley J. Brown , Jakob Ladow , Erik Wardle , Troy Bauder
{"title":"可编程自动化低成本物联网水采样器","authors":"Emmanuel Deleon ,&nbsp;Ansley J. Brown ,&nbsp;Jakob Ladow ,&nbsp;Erik Wardle ,&nbsp;Troy Bauder","doi":"10.1016/j.ohx.2025.e00693","DOIUrl":null,"url":null,"abstract":"<div><div>Water quality management is a critical environmental challenge for water resource managers in agriculture and other sectors due to pollution from contaminants like nitrogen and phosphorus. This pollution degrades ecosystems in waterways worldwide. Environmental pollutant mitigation methods rely heavily on the ability of managers to monitor water quality, often by collecting water samples (either by manual or automated methods) and sending them out for analyte characterization by a laboratory. Traditional automated samplers are often prohibitively expensive and/or complex, hindering effective water resource management across different contexts. Conversely, manual collection methods require more time and labor, but provide less data (i.e., a single point in time as opposed to a composite sample from multiple time points). Addressing this, the Colorado State University Agricultural Water Quality Program created a low-cost, automated water sampler (LCS) leveraging Internet of Things (IoT) technology that enables near-real-time, edge-of-field water monitoring. The LCS stands out for its affordability, simplicity, and real-time data provision, offering a practical tool for water resource managers seeking to monitor WQ. Furthermore, comparing LCS water quality and quantity data shows promising agreement, indicating that the device is a reasonable substitute for practical applications.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"23 ","pages":"Article e00693"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Programmable automated low-cost IoT water sampler\",\"authors\":\"Emmanuel Deleon ,&nbsp;Ansley J. Brown ,&nbsp;Jakob Ladow ,&nbsp;Erik Wardle ,&nbsp;Troy Bauder\",\"doi\":\"10.1016/j.ohx.2025.e00693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water quality management is a critical environmental challenge for water resource managers in agriculture and other sectors due to pollution from contaminants like nitrogen and phosphorus. This pollution degrades ecosystems in waterways worldwide. Environmental pollutant mitigation methods rely heavily on the ability of managers to monitor water quality, often by collecting water samples (either by manual or automated methods) and sending them out for analyte characterization by a laboratory. Traditional automated samplers are often prohibitively expensive and/or complex, hindering effective water resource management across different contexts. Conversely, manual collection methods require more time and labor, but provide less data (i.e., a single point in time as opposed to a composite sample from multiple time points). Addressing this, the Colorado State University Agricultural Water Quality Program created a low-cost, automated water sampler (LCS) leveraging Internet of Things (IoT) technology that enables near-real-time, edge-of-field water monitoring. The LCS stands out for its affordability, simplicity, and real-time data provision, offering a practical tool for water resource managers seeking to monitor WQ. Furthermore, comparing LCS water quality and quantity data shows promising agreement, indicating that the device is a reasonable substitute for practical applications.</div></div>\",\"PeriodicalId\":37503,\"journal\":{\"name\":\"HardwareX\",\"volume\":\"23 \",\"pages\":\"Article e00693\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HardwareX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468067225000719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067225000719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于氮和磷等污染物的污染,水质管理对农业和其他部门的水资源管理人员来说是一个关键的环境挑战。这种污染使全球水道的生态系统退化。减轻环境污染物的方法在很大程度上依赖于管理人员监测水质的能力,通常是通过收集水样(通过手动或自动方法)并将其送到实验室进行分析物表征。传统的自动化采样器往往过于昂贵和/或复杂,阻碍了不同环境下的有效水资源管理。相反,手动收集方法需要更多的时间和劳动力,但提供的数据较少(即,与来自多个时间点的复合样本相反,只有一个时间点)。为了解决这个问题,科罗拉多州立大学农业水质项目开发了一种低成本、自动化的水采样器(LCS),利用物联网(IoT)技术,实现了近乎实时的边缘水质监测。LCS以其可负担性、简单性和实时数据提供而脱颖而出,为寻求监测WQ的水资源管理者提供了实用工具。通过对LCS水质和水量数据的比较,结果吻合良好,表明该装置可替代实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Programmable automated low-cost IoT water sampler

Programmable automated low-cost IoT water sampler
Water quality management is a critical environmental challenge for water resource managers in agriculture and other sectors due to pollution from contaminants like nitrogen and phosphorus. This pollution degrades ecosystems in waterways worldwide. Environmental pollutant mitigation methods rely heavily on the ability of managers to monitor water quality, often by collecting water samples (either by manual or automated methods) and sending them out for analyte characterization by a laboratory. Traditional automated samplers are often prohibitively expensive and/or complex, hindering effective water resource management across different contexts. Conversely, manual collection methods require more time and labor, but provide less data (i.e., a single point in time as opposed to a composite sample from multiple time points). Addressing this, the Colorado State University Agricultural Water Quality Program created a low-cost, automated water sampler (LCS) leveraging Internet of Things (IoT) technology that enables near-real-time, edge-of-field water monitoring. The LCS stands out for its affordability, simplicity, and real-time data provision, offering a practical tool for water resource managers seeking to monitor WQ. Furthermore, comparing LCS water quality and quantity data shows promising agreement, indicating that the device is a reasonable substitute for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HardwareX
HardwareX Engineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍: HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信