希克苏鲁伯撞击球体的镁、铁和钙同位素特征:弹丸和羽流热力学的同位素指纹

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Courtney Jean Rundhaug , Martin Schiller , Martin Bizzarro , Zhengbin Deng , Hermann Dario Bermúdez
{"title":"希克苏鲁伯撞击球体的镁、铁和钙同位素特征:弹丸和羽流热力学的同位素指纹","authors":"Courtney Jean Rundhaug ,&nbsp;Martin Schiller ,&nbsp;Martin Bizzarro ,&nbsp;Zhengbin Deng ,&nbsp;Hermann Dario Bermúdez","doi":"10.1016/j.epsl.2025.119599","DOIUrl":null,"url":null,"abstract":"<div><div>The Cretaceous-Paleogene boundary (KPB) represents a massive extinction event in Earth's history, probably triggered by the Chicxulub asteroid impact ∼66 Ma. The event dispersed vast volumes of ejecta materials including exceptionally preserved impact spherules in the Gorgonilla Island KPB section. Previous work identified three populations of spherules at Gorgonilla: 1) ballistically transported molten spherules, 2) a mixture of molten and condensed spherules dispersed by the expansion of a high-temperature, turbulent cloud (the \"pyrocloud\"), and 3) tiny droplets condensed from the plume (the \"fireball layer\"). We determine the Mg, Fe, and Ca isotopic compositions of pristine spherules to better understand the evaporation and condensation thermodynamics within the pyrocloud. We detect enrichment in mass bias corrected µ<sup>48</sup>Ca and µ<sup>26</sup>Mg* isotope signatures from the terrestrial value corresponding to an impactor contribution of ∼17–25%, most likely from a CM or CO chondrite-like asteroid. The mass-dependent δ<sup>25</sup>Mg and δ<sup>56</sup>Fe compositions are generally light or unfractionated, suggesting incomplete recondensation as the pyrocloud cooled and expanded. Combined δ<sup>25</sup>Mg and δ<sup>56</sup>Fe signatures reveal decoupling of these isotope systems, likely due to differing condensation rates. Thus, we calculate a higher average condensation rate of Fe than Mg, reflecting the thermodynamic decoupling and more complete recondensation signatures of Fe in the pyrocloud vapor. While we uncover information about the evaporation and condensation thermodynamics in the pyrocloud, the exact formation mechanisms of the complete suite of spherules remain complex with some spherules potentially forming from multiple mechanisms, including recondensation and splash–melting.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"670 ","pages":"Article 119599"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnesium, iron, and calcium isotope signatures of Chicxulub impact spherules: Isotopic fingerprint of the projectile and plume thermodynamics\",\"authors\":\"Courtney Jean Rundhaug ,&nbsp;Martin Schiller ,&nbsp;Martin Bizzarro ,&nbsp;Zhengbin Deng ,&nbsp;Hermann Dario Bermúdez\",\"doi\":\"10.1016/j.epsl.2025.119599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Cretaceous-Paleogene boundary (KPB) represents a massive extinction event in Earth's history, probably triggered by the Chicxulub asteroid impact ∼66 Ma. The event dispersed vast volumes of ejecta materials including exceptionally preserved impact spherules in the Gorgonilla Island KPB section. Previous work identified three populations of spherules at Gorgonilla: 1) ballistically transported molten spherules, 2) a mixture of molten and condensed spherules dispersed by the expansion of a high-temperature, turbulent cloud (the \\\"pyrocloud\\\"), and 3) tiny droplets condensed from the plume (the \\\"fireball layer\\\"). We determine the Mg, Fe, and Ca isotopic compositions of pristine spherules to better understand the evaporation and condensation thermodynamics within the pyrocloud. We detect enrichment in mass bias corrected µ<sup>48</sup>Ca and µ<sup>26</sup>Mg* isotope signatures from the terrestrial value corresponding to an impactor contribution of ∼17–25%, most likely from a CM or CO chondrite-like asteroid. The mass-dependent δ<sup>25</sup>Mg and δ<sup>56</sup>Fe compositions are generally light or unfractionated, suggesting incomplete recondensation as the pyrocloud cooled and expanded. Combined δ<sup>25</sup>Mg and δ<sup>56</sup>Fe signatures reveal decoupling of these isotope systems, likely due to differing condensation rates. Thus, we calculate a higher average condensation rate of Fe than Mg, reflecting the thermodynamic decoupling and more complete recondensation signatures of Fe in the pyrocloud vapor. While we uncover information about the evaporation and condensation thermodynamics in the pyrocloud, the exact formation mechanisms of the complete suite of spherules remain complex with some spherules potentially forming from multiple mechanisms, including recondensation and splash–melting.</div></div>\",\"PeriodicalId\":11481,\"journal\":{\"name\":\"Earth and Planetary Science Letters\",\"volume\":\"670 \",\"pages\":\"Article 119599\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012821X25003978\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X25003978","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

白垩纪-古近纪边界(KPB)代表了地球历史上的一次大规模灭绝事件,可能是由Chicxulub小行星撞击引起的~ 66 Ma。这次事件分散了大量的喷出物,包括在Gorgonilla岛KPB部分保存完好的撞击球粒。先前的工作在Gorgonilla上确定了三种球状体:1)通过弹道运输的熔融球状体,2)熔融球状体和冷凝球状体的混合物,通过高温湍流云(“火云”)的膨胀分散开来,3)从羽流中凝结的微小液滴(“火球层”)。我们测定了原始球粒的Mg、Fe和Ca同位素组成,以便更好地了解火云中蒸发和冷凝热力学。我们从地球值中检测到质量偏差校正后的µ48Ca和µ26Mg*同位素特征的富集,对应于撞击物贡献的~ 17-25%,很可能来自CM或CO球粒陨石样小行星。与质量相关的δ25Mg和δ56Fe组成通常较轻或未分馏,表明在火云冷却和膨胀过程中不完全再缩聚。综合δ25Mg和δ56Fe特征显示这些同位素系统的解耦,可能是由于不同的冷凝速率。因此,我们计算出Fe的平均冷凝速率高于Mg,反映了Fe在火云蒸汽中的热力学解耦和更完整的再冷凝特征。虽然我们发现了有关火云中蒸发和冷凝热力学的信息,但整套球粒的确切形成机制仍然很复杂,一些球粒可能通过多种机制形成,包括再凝结和飞溅熔化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnesium, iron, and calcium isotope signatures of Chicxulub impact spherules: Isotopic fingerprint of the projectile and plume thermodynamics
The Cretaceous-Paleogene boundary (KPB) represents a massive extinction event in Earth's history, probably triggered by the Chicxulub asteroid impact ∼66 Ma. The event dispersed vast volumes of ejecta materials including exceptionally preserved impact spherules in the Gorgonilla Island KPB section. Previous work identified three populations of spherules at Gorgonilla: 1) ballistically transported molten spherules, 2) a mixture of molten and condensed spherules dispersed by the expansion of a high-temperature, turbulent cloud (the "pyrocloud"), and 3) tiny droplets condensed from the plume (the "fireball layer"). We determine the Mg, Fe, and Ca isotopic compositions of pristine spherules to better understand the evaporation and condensation thermodynamics within the pyrocloud. We detect enrichment in mass bias corrected µ48Ca and µ26Mg* isotope signatures from the terrestrial value corresponding to an impactor contribution of ∼17–25%, most likely from a CM or CO chondrite-like asteroid. The mass-dependent δ25Mg and δ56Fe compositions are generally light or unfractionated, suggesting incomplete recondensation as the pyrocloud cooled and expanded. Combined δ25Mg and δ56Fe signatures reveal decoupling of these isotope systems, likely due to differing condensation rates. Thus, we calculate a higher average condensation rate of Fe than Mg, reflecting the thermodynamic decoupling and more complete recondensation signatures of Fe in the pyrocloud vapor. While we uncover information about the evaporation and condensation thermodynamics in the pyrocloud, the exact formation mechanisms of the complete suite of spherules remain complex with some spherules potentially forming from multiple mechanisms, including recondensation and splash–melting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信