吸/吹效应下自由强制对流中混合纳米流体的热特性和流动特性

Q1 Mathematics
Sharanayya Swami , Ali B M Ali , Suresh Biradar , Jagadish V Tawade , M. Ijaz Khan , Nitiraj Kulkarni , Dilsora Abduvalieva , M. Waqas
{"title":"吸/吹效应下自由强制对流中混合纳米流体的热特性和流动特性","authors":"Sharanayya Swami ,&nbsp;Ali B M Ali ,&nbsp;Suresh Biradar ,&nbsp;Jagadish V Tawade ,&nbsp;M. Ijaz Khan ,&nbsp;Nitiraj Kulkarni ,&nbsp;Dilsora Abduvalieva ,&nbsp;M. Waqas","doi":"10.1016/j.padiff.2025.101274","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates mixed convection magnetohydrodynamic (MHD) flow and heat transfer of a <span><math><mrow><mi>A</mi><msub><mi>l</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub><mo>−</mo><mo>−</mo><mi>C</mi><mi>u</mi></mrow></math></span>/water hybrid nanofluid over stretching and shrinking surfaces embedded in a porous medium, incorporating the simultaneous effects of suction/injection, thermal slip, viscous dissipation, Joule heating, and thermal radiation. The governing boundary layer equations were transformed using similarity variables and solved numerically with the MATLAB <em>bvp4c</em> solver, employing experimentally validated thermophysical property correlations. Parametric analysis reveals that suction enhances heat transfer by thinning the momentum and thermal boundary layers, while injection reduces it. Magnetic fields and higher nanoparticle loadings increase fluid temperature but reduce the Nusselt number. Thermal slip improves wall heat transfer, whereas viscous dissipation, Joule heating, and radiation diminish it by thickening the thermal layer. Higher Prandtl numbers yield thinner thermal boundary layers and greater heat transfer efficiency. The findings provide useful design insights for thermal systems employing hybrid nanofluids in porous and magnetically influenced environments.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101274"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal and flow characteristics of hybrid nanofluids in free-forced convection under suction/blowing effects\",\"authors\":\"Sharanayya Swami ,&nbsp;Ali B M Ali ,&nbsp;Suresh Biradar ,&nbsp;Jagadish V Tawade ,&nbsp;M. Ijaz Khan ,&nbsp;Nitiraj Kulkarni ,&nbsp;Dilsora Abduvalieva ,&nbsp;M. Waqas\",\"doi\":\"10.1016/j.padiff.2025.101274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates mixed convection magnetohydrodynamic (MHD) flow and heat transfer of a <span><math><mrow><mi>A</mi><msub><mi>l</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub><mo>−</mo><mo>−</mo><mi>C</mi><mi>u</mi></mrow></math></span>/water hybrid nanofluid over stretching and shrinking surfaces embedded in a porous medium, incorporating the simultaneous effects of suction/injection, thermal slip, viscous dissipation, Joule heating, and thermal radiation. The governing boundary layer equations were transformed using similarity variables and solved numerically with the MATLAB <em>bvp4c</em> solver, employing experimentally validated thermophysical property correlations. Parametric analysis reveals that suction enhances heat transfer by thinning the momentum and thermal boundary layers, while injection reduces it. Magnetic fields and higher nanoparticle loadings increase fluid temperature but reduce the Nusselt number. Thermal slip improves wall heat transfer, whereas viscous dissipation, Joule heating, and radiation diminish it by thickening the thermal layer. Higher Prandtl numbers yield thinner thermal boundary layers and greater heat transfer efficiency. The findings provide useful design insights for thermal systems employing hybrid nanofluids in porous and magnetically influenced environments.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101274\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125002013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了Al2O3−−Cu/水混合纳米流体在多孔介质中拉伸和收缩表面上的混合对流磁流体动力学(MHD)流动和传热,同时考虑了吸入/注入、热滑移、粘性耗散、焦耳加热和热辐射的影响。利用相似变量对控制边界层方程进行变换,利用实验验证的热物性相关性,利用MATLAB bvp4c求解器进行数值求解。参数分析表明,吸力通过减薄动量和热边界层来增强传热,而注入则减少了动量和热边界层。磁场和更高的纳米颗粒负载增加了流体温度,但降低了努塞尔数。热滑移改善了壁面传热,而粘性耗散、焦耳加热和辐射通过增厚热层而减弱了壁面传热。普朗特数越高,热边界层越薄,传热效率越高。这些发现为在多孔和受磁影响的环境中使用混合纳米流体的热系统提供了有用的设计见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal and flow characteristics of hybrid nanofluids in free-forced convection under suction/blowing effects
This study investigates mixed convection magnetohydrodynamic (MHD) flow and heat transfer of a Al2O3Cu/water hybrid nanofluid over stretching and shrinking surfaces embedded in a porous medium, incorporating the simultaneous effects of suction/injection, thermal slip, viscous dissipation, Joule heating, and thermal radiation. The governing boundary layer equations were transformed using similarity variables and solved numerically with the MATLAB bvp4c solver, employing experimentally validated thermophysical property correlations. Parametric analysis reveals that suction enhances heat transfer by thinning the momentum and thermal boundary layers, while injection reduces it. Magnetic fields and higher nanoparticle loadings increase fluid temperature but reduce the Nusselt number. Thermal slip improves wall heat transfer, whereas viscous dissipation, Joule heating, and radiation diminish it by thickening the thermal layer. Higher Prandtl numbers yield thinner thermal boundary layers and greater heat transfer efficiency. The findings provide useful design insights for thermal systems employing hybrid nanofluids in porous and magnetically influenced environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信