通过可解释机器学习加速发现难熔高熵合金

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Jian Cao, Chang Liu, Zian Chen, Haichao Li, Lina Xu*, Hongping Xiao, Shun Wang*, Xiao He* and Guoyong Fang*, 
{"title":"通过可解释机器学习加速发现难熔高熵合金","authors":"Jian Cao,&nbsp;Chang Liu,&nbsp;Zian Chen,&nbsp;Haichao Li,&nbsp;Lina Xu*,&nbsp;Hongping Xiao,&nbsp;Shun Wang*,&nbsp;Xiao He* and Guoyong Fang*,&nbsp;","doi":"10.1021/acs.jpclett.5c01616","DOIUrl":null,"url":null,"abstract":"<p >Due to the outstanding thermal stability, inherent high melting points, and elevated temperature strengths, refractory high-entropy alloys (RHEAs) have been widely used for extreme environments in aerospace, nuclear energy, and advanced propulsion systems. Herein, we present an integrated design and simulation framework for RHEAs, combining machine learning potentials, supervised regression models, and multiobjective optimization algorithms. Utilizing a universal neuroevolution potential version 1 (UNEP-v1), the framework significantly enhances the accuracy of atomic-scale simulation while substantially reducing computational cost. High-throughput molecular dynamics simulations generate melting points and ultimate tensile strengths at 1000 K for various alloy compositions. Supervised regression models enable a rapid performance prediction. Integrating Shapley Additive exPlanations, Partial Dependence Plots, Accumulated Local Effects, and Individual Conditional Expectation analysis can provide a comprehensive interpretability toolkit. Validation of the proposed method in the TiVCrZrMo alloy system demonstrates its efficacy in designing high-strength, high-temperature resistant alloys. We not only develop a precise and interpretable predictive modeling paradigm but also establish procedural frameworks, promoting the integration of atomic-scale simulations with data-driven approaches for RHEAs in extreme environments.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 34","pages":"8806–8814"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated Discovery of Refractory High-Entropy Alloys via Interpretable Machine Learning\",\"authors\":\"Jian Cao,&nbsp;Chang Liu,&nbsp;Zian Chen,&nbsp;Haichao Li,&nbsp;Lina Xu*,&nbsp;Hongping Xiao,&nbsp;Shun Wang*,&nbsp;Xiao He* and Guoyong Fang*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c01616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Due to the outstanding thermal stability, inherent high melting points, and elevated temperature strengths, refractory high-entropy alloys (RHEAs) have been widely used for extreme environments in aerospace, nuclear energy, and advanced propulsion systems. Herein, we present an integrated design and simulation framework for RHEAs, combining machine learning potentials, supervised regression models, and multiobjective optimization algorithms. Utilizing a universal neuroevolution potential version 1 (UNEP-v1), the framework significantly enhances the accuracy of atomic-scale simulation while substantially reducing computational cost. High-throughput molecular dynamics simulations generate melting points and ultimate tensile strengths at 1000 K for various alloy compositions. Supervised regression models enable a rapid performance prediction. Integrating Shapley Additive exPlanations, Partial Dependence Plots, Accumulated Local Effects, and Individual Conditional Expectation analysis can provide a comprehensive interpretability toolkit. Validation of the proposed method in the TiVCrZrMo alloy system demonstrates its efficacy in designing high-strength, high-temperature resistant alloys. We not only develop a precise and interpretable predictive modeling paradigm but also establish procedural frameworks, promoting the integration of atomic-scale simulations with data-driven approaches for RHEAs in extreme environments.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 34\",\"pages\":\"8806–8814\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01616\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01616","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于优异的热稳定性、固有的高熔点和高温强度,耐火高熵合金(RHEAs)被广泛应用于航空航天、核能和先进推进系统的极端环境中。在此,我们提出了一个集成的RHEAs设计和仿真框架,结合了机器学习潜力,监督回归模型和多目标优化算法。利用通用神经进化潜力版本1 (UNEP-v1),该框架显着提高了原子尺度模拟的准确性,同时大大降低了计算成本。高通量分子动力学模拟生成熔点和1000 K下各种合金成分的极限抗拉强度。监督回归模型能够实现快速的性能预测。整合Shapley加性解释、部分依赖图、累积局部效应和个体条件期望分析可以提供全面的可解释性工具包。在TiVCrZrMo合金体系中验证了该方法在设计高强度、耐高温合金方面的有效性。我们不仅开发了一个精确和可解释的预测建模范式,而且建立了程序框架,促进了极端环境下RHEAs的原子尺度模拟与数据驱动方法的集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accelerated Discovery of Refractory High-Entropy Alloys via Interpretable Machine Learning

Accelerated Discovery of Refractory High-Entropy Alloys via Interpretable Machine Learning

Due to the outstanding thermal stability, inherent high melting points, and elevated temperature strengths, refractory high-entropy alloys (RHEAs) have been widely used for extreme environments in aerospace, nuclear energy, and advanced propulsion systems. Herein, we present an integrated design and simulation framework for RHEAs, combining machine learning potentials, supervised regression models, and multiobjective optimization algorithms. Utilizing a universal neuroevolution potential version 1 (UNEP-v1), the framework significantly enhances the accuracy of atomic-scale simulation while substantially reducing computational cost. High-throughput molecular dynamics simulations generate melting points and ultimate tensile strengths at 1000 K for various alloy compositions. Supervised regression models enable a rapid performance prediction. Integrating Shapley Additive exPlanations, Partial Dependence Plots, Accumulated Local Effects, and Individual Conditional Expectation analysis can provide a comprehensive interpretability toolkit. Validation of the proposed method in the TiVCrZrMo alloy system demonstrates its efficacy in designing high-strength, high-temperature resistant alloys. We not only develop a precise and interpretable predictive modeling paradigm but also establish procedural frameworks, promoting the integration of atomic-scale simulations with data-driven approaches for RHEAs in extreme environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信