T. Cuppone, C. Carli, M. Casalini, A. Stephant, C. R. Greenwood, G. Pratesi
{"title":"西北非洲13489:强烈变质的未分组碳质球粒陨石","authors":"T. Cuppone, C. Carli, M. Casalini, A. Stephant, C. R. Greenwood, G. Pratesi","doi":"10.1111/maps.70007","DOIUrl":null,"url":null,"abstract":"<p>NWA 13489 is a meteorite that has been classified as a brachinite. Brachinites are olivine-rich primitive achondrites representing residual products after a variable degree of silicate melt extraction on a barely differentiated, noncarbonaceous asteroid. Nevertheless, NWA 13489 displays petrographic and mineralogical characteristics that are anomalous when compared with other meteorites of that group. The petrography and thermometric data of this sample are compatible with a high metamorphic grade origin. NWA 13489 results in intermediate between type 6 and 7 chondrites, with a thermal regime broadly straddling the FeNi-FeS eutectic and the onset of silicate melting, resembling other meteorites defined as primitive achondrites. Evidence from mineral chemistry, bulk trace element geochemistry, and oxygen and chromium isotope systematics shows a “carbonaceous” composition and, therefore, NWA 13489 is not a brachinite. Rather, together with an ungrouped chondrite (the NWA 11961 C3-ungrouped) and other ungrouped achondrites (the paired NWA 10503/10859), NWA 13489 supports the existence of a distinct carbonaceous-like meteorite grouplet.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 8","pages":"1861-1876"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.70007","citationCount":"0","resultStr":"{\"title\":\"Northwest Africa 13489: A Strongly Metamorphosed Ungrouped Carbonaceous Chondrite\",\"authors\":\"T. Cuppone, C. Carli, M. Casalini, A. Stephant, C. R. Greenwood, G. Pratesi\",\"doi\":\"10.1111/maps.70007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>NWA 13489 is a meteorite that has been classified as a brachinite. Brachinites are olivine-rich primitive achondrites representing residual products after a variable degree of silicate melt extraction on a barely differentiated, noncarbonaceous asteroid. Nevertheless, NWA 13489 displays petrographic and mineralogical characteristics that are anomalous when compared with other meteorites of that group. The petrography and thermometric data of this sample are compatible with a high metamorphic grade origin. NWA 13489 results in intermediate between type 6 and 7 chondrites, with a thermal regime broadly straddling the FeNi-FeS eutectic and the onset of silicate melting, resembling other meteorites defined as primitive achondrites. Evidence from mineral chemistry, bulk trace element geochemistry, and oxygen and chromium isotope systematics shows a “carbonaceous” composition and, therefore, NWA 13489 is not a brachinite. Rather, together with an ungrouped chondrite (the NWA 11961 C3-ungrouped) and other ungrouped achondrites (the paired NWA 10503/10859), NWA 13489 supports the existence of a distinct carbonaceous-like meteorite grouplet.</p>\",\"PeriodicalId\":18555,\"journal\":{\"name\":\"Meteoritics & Planetary Science\",\"volume\":\"60 8\",\"pages\":\"1861-1876\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.70007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteoritics & Planetary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/maps.70007\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.70007","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Northwest Africa 13489: A Strongly Metamorphosed Ungrouped Carbonaceous Chondrite
NWA 13489 is a meteorite that has been classified as a brachinite. Brachinites are olivine-rich primitive achondrites representing residual products after a variable degree of silicate melt extraction on a barely differentiated, noncarbonaceous asteroid. Nevertheless, NWA 13489 displays petrographic and mineralogical characteristics that are anomalous when compared with other meteorites of that group. The petrography and thermometric data of this sample are compatible with a high metamorphic grade origin. NWA 13489 results in intermediate between type 6 and 7 chondrites, with a thermal regime broadly straddling the FeNi-FeS eutectic and the onset of silicate melting, resembling other meteorites defined as primitive achondrites. Evidence from mineral chemistry, bulk trace element geochemistry, and oxygen and chromium isotope systematics shows a “carbonaceous” composition and, therefore, NWA 13489 is not a brachinite. Rather, together with an ungrouped chondrite (the NWA 11961 C3-ungrouped) and other ungrouped achondrites (the paired NWA 10503/10859), NWA 13489 supports the existence of a distinct carbonaceous-like meteorite grouplet.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.