深土压力下冲击熔融二氧化硅的声速和颗粒 neisen参数

IF 4.1 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
I. K. Ocampo, J. M. Winey, T. S. Duffy
{"title":"深土压力下冲击熔融二氧化硅的声速和颗粒<s:1> neisen参数","authors":"I. K. Ocampo,&nbsp;J. M. Winey,&nbsp;T. S. Duffy","doi":"10.1029/2025JB031366","DOIUrl":null,"url":null,"abstract":"<p>Silica is a primary component of rocky planet interiors and its melt properties are important for understanding planetary formation and differentiation, magma oceans, and the deep mantle. Although well understood in the solid state, the high-pressure behavior of liquid silica is poorly constrained at lower mantle pressures. Using laser interferometry to measure shock wave profiles, we report measured stress-density states and longitudinal sound speeds in shock-synthesized stishovite, from fused silica staring material, and across the solid-liquid phase boundary up to 154 GPa. Our results constrain completion of melt at 80 GPa and show that at pressures relevant to the deep mantles of Earth-sized, rocky planets, the Grüneisen parameter for liquid silica increases with compression. This finding is consistent with a continuous increase in Si-O coordination above six for liquid silica at core-mantle boundary relevant pressures and temperatures.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JB031366","citationCount":"0","resultStr":"{\"title\":\"Sound Velocity and Grüneisen Parameter in Shock-Melted Silica at Deep Earth Pressures\",\"authors\":\"I. K. Ocampo,&nbsp;J. M. Winey,&nbsp;T. S. Duffy\",\"doi\":\"10.1029/2025JB031366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silica is a primary component of rocky planet interiors and its melt properties are important for understanding planetary formation and differentiation, magma oceans, and the deep mantle. Although well understood in the solid state, the high-pressure behavior of liquid silica is poorly constrained at lower mantle pressures. Using laser interferometry to measure shock wave profiles, we report measured stress-density states and longitudinal sound speeds in shock-synthesized stishovite, from fused silica staring material, and across the solid-liquid phase boundary up to 154 GPa. Our results constrain completion of melt at 80 GPa and show that at pressures relevant to the deep mantles of Earth-sized, rocky planets, the Grüneisen parameter for liquid silica increases with compression. This finding is consistent with a continuous increase in Si-O coordination above six for liquid silica at core-mantle boundary relevant pressures and temperatures.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"130 9\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JB031366\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JB031366\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JB031366","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

二氧化硅是岩石行星内部的主要成分,它的熔融性质对了解行星的形成和分化、岩浆海洋和深部地幔都很重要。尽管在固体状态下二氧化硅的高压行为得到了很好的理解,但在低地幔压力下,液态二氧化硅的高压行为却受到了很差的约束。利用激光干涉测量技术测量激波剖面,研究人员报告了由熔融二氧化硅材料制成的激波合成辉石中应力密度状态和纵向声速的测量结果,并跨越了高达154 GPa的固液相边界。我们的研究结果限制了80 GPa的熔融完成,并表明在与地球大小的岩石行星深部地幔相关的压力下,液态二氧化硅的grisen参数随着压缩而增加。这一发现与在核幔边界相关压力和温度下液态二氧化硅Si-O配位持续增加到6以上是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sound Velocity and Grüneisen Parameter in Shock-Melted Silica at Deep Earth Pressures

Sound Velocity and Grüneisen Parameter in Shock-Melted Silica at Deep Earth Pressures

Sound Velocity and Grüneisen Parameter in Shock-Melted Silica at Deep Earth Pressures

Sound Velocity and Grüneisen Parameter in Shock-Melted Silica at Deep Earth Pressures

Sound Velocity and Grüneisen Parameter in Shock-Melted Silica at Deep Earth Pressures

Silica is a primary component of rocky planet interiors and its melt properties are important for understanding planetary formation and differentiation, magma oceans, and the deep mantle. Although well understood in the solid state, the high-pressure behavior of liquid silica is poorly constrained at lower mantle pressures. Using laser interferometry to measure shock wave profiles, we report measured stress-density states and longitudinal sound speeds in shock-synthesized stishovite, from fused silica staring material, and across the solid-liquid phase boundary up to 154 GPa. Our results constrain completion of melt at 80 GPa and show that at pressures relevant to the deep mantles of Earth-sized, rocky planets, the Grüneisen parameter for liquid silica increases with compression. This finding is consistent with a continuous increase in Si-O coordination above six for liquid silica at core-mantle boundary relevant pressures and temperatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Solid Earth
Journal of Geophysical Research: Solid Earth Earth and Planetary Sciences-Geophysics
CiteScore
7.50
自引率
15.40%
发文量
559
期刊介绍: The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology. JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields. JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信