随机数据中非单调缺失部分线性模型的统一估计方法

IF 1.8 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Yang Zhao
{"title":"随机数据中非单调缺失部分线性模型的统一估计方法","authors":"Yang Zhao","doi":"10.1002/bimj.70070","DOIUrl":null,"url":null,"abstract":"<p>Partially linear models are commonly used in observational studies of the causal effect of treatment and/or exposure when there are observed confounding variables. The models are robust and asymptotically distribution-free for testing the causal null hypothesis. In this research, we investigate methods for estimating the partially linear models with data missing at random in all the variables, including the response, the treatment, and the confounding variables. We develop a general estimation method for inference in partially linear models with nonmonotone missing at random data. It proposes using partially linear working models to improve the estimation efficiency of the standard complete case method. It can be shown that the new estimator is consistent, which does not depend on the correctness of the working models. In addition, we recommend bootstrap estimates for the asymptotic variances and semiparametric models for the missing data probabilities. It is computationally simple and can be directly implemented in standard software. Simulation studies are provided to examine its performance. A real data example with sparsely observed missingness patterns is used to illustrate the method.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70070","citationCount":"0","resultStr":"{\"title\":\"Unified Estimation Method for Partially Linear Models With Nonmonotone Missing at Random Data\",\"authors\":\"Yang Zhao\",\"doi\":\"10.1002/bimj.70070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Partially linear models are commonly used in observational studies of the causal effect of treatment and/or exposure when there are observed confounding variables. The models are robust and asymptotically distribution-free for testing the causal null hypothesis. In this research, we investigate methods for estimating the partially linear models with data missing at random in all the variables, including the response, the treatment, and the confounding variables. We develop a general estimation method for inference in partially linear models with nonmonotone missing at random data. It proposes using partially linear working models to improve the estimation efficiency of the standard complete case method. It can be shown that the new estimator is consistent, which does not depend on the correctness of the working models. In addition, we recommend bootstrap estimates for the asymptotic variances and semiparametric models for the missing data probabilities. It is computationally simple and can be directly implemented in standard software. Simulation studies are provided to examine its performance. A real data example with sparsely observed missingness patterns is used to illustrate the method.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"67 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70070\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70070\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70070","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

当存在观察到的混杂变量时,部分线性模型通常用于治疗和/或暴露的因果效应的观察性研究。对于检验因果原假设,模型是鲁棒性和渐近无分布的。在这项研究中,我们探讨了在所有变量中随机丢失数据的部分线性模型的估计方法,包括响应,处理和混杂变量。针对随机数据缺失非单调的部分线性模型,提出了一种通用的推理估计方法。提出采用部分线性工作模型来提高标准完全案例法的估计效率。结果表明,新的估计量是一致的,而不依赖于工作模型的正确性。此外,我们推荐对渐近方差的自举估计和对缺失数据概率的半参数模型。它计算简单,可以直接在标准软件中实现。通过仿真研究验证了其性能。用一个具有稀疏缺失模式的实际数据示例来说明该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unified Estimation Method for Partially Linear Models With Nonmonotone Missing at Random Data

Unified Estimation Method for Partially Linear Models With Nonmonotone Missing at Random Data

Partially linear models are commonly used in observational studies of the causal effect of treatment and/or exposure when there are observed confounding variables. The models are robust and asymptotically distribution-free for testing the causal null hypothesis. In this research, we investigate methods for estimating the partially linear models with data missing at random in all the variables, including the response, the treatment, and the confounding variables. We develop a general estimation method for inference in partially linear models with nonmonotone missing at random data. It proposes using partially linear working models to improve the estimation efficiency of the standard complete case method. It can be shown that the new estimator is consistent, which does not depend on the correctness of the working models. In addition, we recommend bootstrap estimates for the asymptotic variances and semiparametric models for the missing data probabilities. It is computationally simple and can be directly implemented in standard software. Simulation studies are provided to examine its performance. A real data example with sparsely observed missingness patterns is used to illustrate the method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信