高透明纳米级隧道氧化物多晶硅钝化接触:优化,分析和影响研究

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2025-07-14 DOI:10.1002/solr.202500246
Kean Chern Fong, Stephane Armand, Rabin Basnet, Di Yan, Marco Ernst, Gabriel Bartholazzi Lugao De Carvalho, Anitta Rose Varghese, Muhammad Faheem Maqsood, Felipe Kremer, Jiali Wang, Zhongshu Yang, Heping Shen, James Bullock, Peiting Zheng, Jie Yang, Xinyu Zhang, Daniel Macdonald
{"title":"高透明纳米级隧道氧化物多晶硅钝化接触:优化,分析和影响研究","authors":"Kean Chern Fong,&nbsp;Stephane Armand,&nbsp;Rabin Basnet,&nbsp;Di Yan,&nbsp;Marco Ernst,&nbsp;Gabriel Bartholazzi Lugao De Carvalho,&nbsp;Anitta Rose Varghese,&nbsp;Muhammad Faheem Maqsood,&nbsp;Felipe Kremer,&nbsp;Jiali Wang,&nbsp;Zhongshu Yang,&nbsp;Heping Shen,&nbsp;James Bullock,&nbsp;Peiting Zheng,&nbsp;Jie Yang,&nbsp;Xinyu Zhang,&nbsp;Daniel Macdonald","doi":"10.1002/solr.202500246","DOIUrl":null,"url":null,"abstract":"<p>The presented work on nanometre scale ultra-thin tunnel oxide passivated contact (UT-TOPCon) technology presents a promising pathway for enhancing power conversion efficiency in Si solar cells by mitigating parasitic optical losses. The in-depth optimisation demonstrates record-low surface recombination currents for a polysilicon layer under 3 nm thick, measuring 0.8 fAcm<sup>−2</sup> on planar and 1.3 fAcm<sup>−2</sup> on textured surfaces. Low specific contact resistivities between 2.5 and 5 mΩcm<sup>2</sup> were measured on various samples, confirming its excellent carrier transport properties. Furthermore, optical properties were characterised and the opto-electrical inputs were incorporated into a comprehensive numerical simulation study to evaluate the impact of its application for Si-perovskite tandem and various single-junction Si cell architectures. The results indicate significant performance improvements to Si-perovskite tandem devices, and very high efficiency potential of 26.7% in front and rear UT-TOPCon designs and up to 27.5% in interdigitated back-contact UT-TOPCon structures.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 16","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500246","citationCount":"0","resultStr":"{\"title\":\"Highly Transparent Nanoscale Tunnel Oxide Polysilicon Passivated Contacts: Optimisation, Analysis, and Impact Study\",\"authors\":\"Kean Chern Fong,&nbsp;Stephane Armand,&nbsp;Rabin Basnet,&nbsp;Di Yan,&nbsp;Marco Ernst,&nbsp;Gabriel Bartholazzi Lugao De Carvalho,&nbsp;Anitta Rose Varghese,&nbsp;Muhammad Faheem Maqsood,&nbsp;Felipe Kremer,&nbsp;Jiali Wang,&nbsp;Zhongshu Yang,&nbsp;Heping Shen,&nbsp;James Bullock,&nbsp;Peiting Zheng,&nbsp;Jie Yang,&nbsp;Xinyu Zhang,&nbsp;Daniel Macdonald\",\"doi\":\"10.1002/solr.202500246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The presented work on nanometre scale ultra-thin tunnel oxide passivated contact (UT-TOPCon) technology presents a promising pathway for enhancing power conversion efficiency in Si solar cells by mitigating parasitic optical losses. The in-depth optimisation demonstrates record-low surface recombination currents for a polysilicon layer under 3 nm thick, measuring 0.8 fAcm<sup>−2</sup> on planar and 1.3 fAcm<sup>−2</sup> on textured surfaces. Low specific contact resistivities between 2.5 and 5 mΩcm<sup>2</sup> were measured on various samples, confirming its excellent carrier transport properties. Furthermore, optical properties were characterised and the opto-electrical inputs were incorporated into a comprehensive numerical simulation study to evaluate the impact of its application for Si-perovskite tandem and various single-junction Si cell architectures. The results indicate significant performance improvements to Si-perovskite tandem devices, and very high efficiency potential of 26.7% in front and rear UT-TOPCon designs and up to 27.5% in interdigitated back-contact UT-TOPCon structures.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 16\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202500246\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500246\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202500246","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

纳米级超薄隧道氧化物钝化接触(UT-TOPCon)技术为通过减少寄生光损耗来提高硅太阳能电池的功率转换效率提供了一条有前途的途径。深度优化表明,厚度在3nm以下的多晶硅层的表面复合电流创历史新低,在平面上测量0.8 fAcm−2,在纹理表面测量1.3 fAcm−2。在各种样品上测量了2.5 ~ 5 mΩcm2之间的低比接触电阻率,证实了其优异的载流子输运性能。此外,光学特性被表征,光电输入被纳入一个全面的数值模拟研究,以评估其应用于硅钙钛矿串联和各种单结硅电池结构的影响。结果表明,si -钙钛矿串联器件的性能得到了显著改善,前后UT-TOPCon设计的效率高达26.7%,而交叉背接触UT-TOPCon结构的效率高达27.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly Transparent Nanoscale Tunnel Oxide Polysilicon Passivated Contacts: Optimisation, Analysis, and Impact Study

Highly Transparent Nanoscale Tunnel Oxide Polysilicon Passivated Contacts: Optimisation, Analysis, and Impact Study

The presented work on nanometre scale ultra-thin tunnel oxide passivated contact (UT-TOPCon) technology presents a promising pathway for enhancing power conversion efficiency in Si solar cells by mitigating parasitic optical losses. The in-depth optimisation demonstrates record-low surface recombination currents for a polysilicon layer under 3 nm thick, measuring 0.8 fAcm−2 on planar and 1.3 fAcm−2 on textured surfaces. Low specific contact resistivities between 2.5 and 5 mΩcm2 were measured on various samples, confirming its excellent carrier transport properties. Furthermore, optical properties were characterised and the opto-electrical inputs were incorporated into a comprehensive numerical simulation study to evaluate the impact of its application for Si-perovskite tandem and various single-junction Si cell architectures. The results indicate significant performance improvements to Si-perovskite tandem devices, and very high efficiency potential of 26.7% in front and rear UT-TOPCon designs and up to 27.5% in interdigitated back-contact UT-TOPCon structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信