杂质气体对Ti + 2B混合气燃烧的影响

IF 0.6 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yu. V. Bogatov, V. A. Shcherbakov
{"title":"杂质气体对Ti + 2B混合气燃烧的影响","authors":"Yu. V. Bogatov,&nbsp;V. A. Shcherbakov","doi":"10.3103/S1061386225700190","DOIUrl":null,"url":null,"abstract":"<p>A comparative analysis of forced SHS compaction of single- and double-layer pressed Ti + 2B mixtures was carried out. High-velocity impurity gases were found to be able to initiate SHS reaction in the green mixture. It was shown that the use of double-layer combustion scheme permits to reduce the burning time of pellet in half due to the propagation of red-hot impurity gases between its layers. Their propagation velocity was found to be determined by total pellet mass: the larger the pellet mass, the higher the propagation velocity of impurity gases through artificially organized channels (gaps between the layers). Short burning time reduces the delay interval for the onset of consolidation of SHS products and facilitates the consolidation of synthesis products (hot pressing) at higher temperature and lower temperature gradient over the burned pellet.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"34 3","pages":"215 - 220"},"PeriodicalIF":0.6000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Impurity Gases on Combustion of Ti + 2B Mixture\",\"authors\":\"Yu. V. Bogatov,&nbsp;V. A. Shcherbakov\",\"doi\":\"10.3103/S1061386225700190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A comparative analysis of forced SHS compaction of single- and double-layer pressed Ti + 2B mixtures was carried out. High-velocity impurity gases were found to be able to initiate SHS reaction in the green mixture. It was shown that the use of double-layer combustion scheme permits to reduce the burning time of pellet in half due to the propagation of red-hot impurity gases between its layers. Their propagation velocity was found to be determined by total pellet mass: the larger the pellet mass, the higher the propagation velocity of impurity gases through artificially organized channels (gaps between the layers). Short burning time reduces the delay interval for the onset of consolidation of SHS products and facilitates the consolidation of synthesis products (hot pressing) at higher temperature and lower temperature gradient over the burned pellet.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"34 3\",\"pages\":\"215 - 220\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386225700190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386225700190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对单层和双层压实Ti + 2B混合物的强制SHS压实进行了对比分析。发现高速杂质气体能够在绿色混合物中引发SHS反应。结果表明,采用双层燃烧方案可以使颗粒燃烧时间缩短一半,这是由于热杂质气体在颗粒层之间的传播。它们的传播速度被发现是由球团的总质量决定的:球团质量越大,杂质气体通过人工组织的通道(层之间的间隙)的传播速度越高。较短的燃烧时间减少了SHS产物开始固结的延迟间隔,有利于合成产物(热压)在燃烧颗粒上更高的温度和更低的温度梯度下的固结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Impurity Gases on Combustion of Ti + 2B Mixture

A comparative analysis of forced SHS compaction of single- and double-layer pressed Ti + 2B mixtures was carried out. High-velocity impurity gases were found to be able to initiate SHS reaction in the green mixture. It was shown that the use of double-layer combustion scheme permits to reduce the burning time of pellet in half due to the propagation of red-hot impurity gases between its layers. Their propagation velocity was found to be determined by total pellet mass: the larger the pellet mass, the higher the propagation velocity of impurity gases through artificially organized channels (gaps between the layers). Short burning time reduces the delay interval for the onset of consolidation of SHS products and facilitates the consolidation of synthesis products (hot pressing) at higher temperature and lower temperature gradient over the burned pellet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
33.30%
发文量
27
期刊介绍: International Journal of Self-Propagating High-Temperature Synthesis  is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信