大文本数据在技术成熟度评估中的应用展望(出版物评论)

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
I. V. Loginova, F. M. Grozovskiy, A. S. Piekalnits
{"title":"大文本数据在技术成熟度评估中的应用展望(出版物评论)","authors":"I. V. Loginova,&nbsp;F. M. Grozovskiy,&nbsp;A. S. Piekalnits","doi":"10.3103/S0005105525700505","DOIUrl":null,"url":null,"abstract":"<p>The paper analyzes the limitations of conventional methods for assessing the maturity of technology, such as the <i>S</i>-curve, technology readiness level (TRL), Gartner’s hype cycle and their dependence on experts’ opinions. Current approaches to this task based on big text data analysis and machine learning algorithms are reviewed, and their advantages are demonstrated. As a result of existing research systematization, the prospects of transition to automated technology maturity assessment using machine learning methods are revealed.</p>","PeriodicalId":42995,"journal":{"name":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","volume":"59 3","pages":"145 - 153"},"PeriodicalIF":0.5000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospects for Big Text Data Application in Technology Maturity Assessment (Publications Review)\",\"authors\":\"I. V. Loginova,&nbsp;F. M. Grozovskiy,&nbsp;A. S. Piekalnits\",\"doi\":\"10.3103/S0005105525700505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper analyzes the limitations of conventional methods for assessing the maturity of technology, such as the <i>S</i>-curve, technology readiness level (TRL), Gartner’s hype cycle and their dependence on experts’ opinions. Current approaches to this task based on big text data analysis and machine learning algorithms are reviewed, and their advantages are demonstrated. As a result of existing research systematization, the prospects of transition to automated technology maturity assessment using machine learning methods are revealed.</p>\",\"PeriodicalId\":42995,\"journal\":{\"name\":\"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS\",\"volume\":\"59 3\",\"pages\":\"145 - 153\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0005105525700505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0005105525700505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了传统技术成熟度评估方法的局限性,如s曲线、技术成熟度水平(TRL)、Gartner的炒作周期以及它们对专家意见的依赖。本文回顾了当前基于大文本数据分析和机器学习算法的方法,并展示了它们的优势。由于现有研究的系统化,揭示了使用机器学习方法向自动化技术成熟度评估过渡的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prospects for Big Text Data Application in Technology Maturity Assessment (Publications Review)

The paper analyzes the limitations of conventional methods for assessing the maturity of technology, such as the S-curve, technology readiness level (TRL), Gartner’s hype cycle and their dependence on experts’ opinions. Current approaches to this task based on big text data analysis and machine learning algorithms are reviewed, and their advantages are demonstrated. As a result of existing research systematization, the prospects of transition to automated technology maturity assessment using machine learning methods are revealed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS
AUTOMATIC DOCUMENTATION AND MATHEMATICAL LINGUISTICS COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
18
期刊介绍: Automatic Documentation and Mathematical Linguistics  is an international peer reviewed journal that covers all aspects of automation of information processes and systems, as well as algorithms and methods for automatic language analysis. Emphasis is on the practical applications of new technologies and techniques for information analysis and processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信