Mahin Saif Nowl, V. Ambili, Vishal Gautam, Saikat Dutta, Saumen Mandal
{"title":"大豆分离蛋白薄膜:一种可生物降解的紫外线防护替代品","authors":"Mahin Saif Nowl, V. Ambili, Vishal Gautam, Saikat Dutta, Saumen Mandal","doi":"10.1007/s11694-025-03347-x","DOIUrl":null,"url":null,"abstract":"<div><p>The uncompromising need to protect against harmful UVA and UVB radiation and to alleviate plastic pollution has catalyzed the development of innovative, eco-friendly materials. This study presents a solution by developing a transparent coating derived from Soy Protein Isolate (SPI), offering UV protection as well as sustainable bioplastic alternatives to synthetic polymers. The structural and chemical properties of SPI coatings, highlighting their UV protective capabilities, were analyzed using UV absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Differential Scanning Calorimetry (DSC), Nuclear Magnetic Resonance (NMR), and High-Resolution Liquid Chromatography-Mass Spectrometry (HR-LCMS). X-ray photoelectron spectroscopy (XPS) analysis showed decrease in carbon composition between SPI powder and film, suggesting a different surface composition for the film from powder, whereas denaturation was further confirmed by DSC. Contact angle measurement gives insights about the surface properties of the film and HR-LCMS gives the amino acids present in SPI. The biodegradability of SPI, coupled with its durability and transparency, underscores its potential as a versatile host material for various coatings. highlighting its additional advantage. From the FE-SEM study, the coating shows uniformity, which presents an innovative approach to transparent coatings. Notably, alongside transparency, the inherent UV absorption properties of SPI remained consistent before and after denaturation, showing potential applications in UV protective biodegradable coatings for various industrial applications, promoting eco-friendly alternatives to synthetic polymers.</p></div>","PeriodicalId":631,"journal":{"name":"Journal of Food Measurement and Characterization","volume":"19 8","pages":"5683 - 5694"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soy protein isolate films: a biodegradable solution for UV protection alternatives\",\"authors\":\"Mahin Saif Nowl, V. Ambili, Vishal Gautam, Saikat Dutta, Saumen Mandal\",\"doi\":\"10.1007/s11694-025-03347-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The uncompromising need to protect against harmful UVA and UVB radiation and to alleviate plastic pollution has catalyzed the development of innovative, eco-friendly materials. This study presents a solution by developing a transparent coating derived from Soy Protein Isolate (SPI), offering UV protection as well as sustainable bioplastic alternatives to synthetic polymers. The structural and chemical properties of SPI coatings, highlighting their UV protective capabilities, were analyzed using UV absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Differential Scanning Calorimetry (DSC), Nuclear Magnetic Resonance (NMR), and High-Resolution Liquid Chromatography-Mass Spectrometry (HR-LCMS). X-ray photoelectron spectroscopy (XPS) analysis showed decrease in carbon composition between SPI powder and film, suggesting a different surface composition for the film from powder, whereas denaturation was further confirmed by DSC. Contact angle measurement gives insights about the surface properties of the film and HR-LCMS gives the amino acids present in SPI. The biodegradability of SPI, coupled with its durability and transparency, underscores its potential as a versatile host material for various coatings. highlighting its additional advantage. From the FE-SEM study, the coating shows uniformity, which presents an innovative approach to transparent coatings. Notably, alongside transparency, the inherent UV absorption properties of SPI remained consistent before and after denaturation, showing potential applications in UV protective biodegradable coatings for various industrial applications, promoting eco-friendly alternatives to synthetic polymers.</p></div>\",\"PeriodicalId\":631,\"journal\":{\"name\":\"Journal of Food Measurement and Characterization\",\"volume\":\"19 8\",\"pages\":\"5683 - 5694\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Measurement and Characterization\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11694-025-03347-x\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Measurement and Characterization","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11694-025-03347-x","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Soy protein isolate films: a biodegradable solution for UV protection alternatives
The uncompromising need to protect against harmful UVA and UVB radiation and to alleviate plastic pollution has catalyzed the development of innovative, eco-friendly materials. This study presents a solution by developing a transparent coating derived from Soy Protein Isolate (SPI), offering UV protection as well as sustainable bioplastic alternatives to synthetic polymers. The structural and chemical properties of SPI coatings, highlighting their UV protective capabilities, were analyzed using UV absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Differential Scanning Calorimetry (DSC), Nuclear Magnetic Resonance (NMR), and High-Resolution Liquid Chromatography-Mass Spectrometry (HR-LCMS). X-ray photoelectron spectroscopy (XPS) analysis showed decrease in carbon composition between SPI powder and film, suggesting a different surface composition for the film from powder, whereas denaturation was further confirmed by DSC. Contact angle measurement gives insights about the surface properties of the film and HR-LCMS gives the amino acids present in SPI. The biodegradability of SPI, coupled with its durability and transparency, underscores its potential as a versatile host material for various coatings. highlighting its additional advantage. From the FE-SEM study, the coating shows uniformity, which presents an innovative approach to transparent coatings. Notably, alongside transparency, the inherent UV absorption properties of SPI remained consistent before and after denaturation, showing potential applications in UV protective biodegradable coatings for various industrial applications, promoting eco-friendly alternatives to synthetic polymers.
期刊介绍:
This interdisciplinary journal publishes new measurement results, characteristic properties, differentiating patterns, measurement methods and procedures for such purposes as food process innovation, product development, quality control, and safety assurance.
The journal encompasses all topics related to food property measurement and characterization, including all types of measured properties of food and food materials, features and patterns, measurement principles and techniques, development and evaluation of technologies, novel uses and applications, and industrial implementation of systems and procedures.