Suyash Kushwaha;Chintu Bhaskara Rao;Shamini P R;Sourajeet Roy;Rohit Sharma
{"title":"用于神经形态计算的交叉杆阵列中性能增强的铜-石墨烯异质互连结构","authors":"Suyash Kushwaha;Chintu Bhaskara Rao;Shamini P R;Sourajeet Roy;Rohit Sharma","doi":"10.1109/JMMCT.2025.3593872","DOIUrl":null,"url":null,"abstract":"In this paper, novel copper graphene heterogeneous interconnect structures are proposed which retain the ease of fabrication while having far better electrical performance when compared to the conventional copper interconnects. In the nanoscale regime, signal integrity (SI) of the copper interconnects degrades significantly. To address the signal integrity issues, these heterogeneous interconnects are developed at 7 nm technology nodes which are further used to make the crossbar arrays for neuromorphic computing. The proposed copper graphene heterogeneous interconnects were designed by stacking the layers of copper and multilayer graphene nanoribbons (MLGNRs) one over the other and a detailed signal integrity analysis is done based on the quantities like the per unit length Resistance, Insertion Loss (IL), Return Loss (RL), eye diagrams, surface charge density and volume current density. The results shows that the proposed interconnects outperformed the copper interconnects based on each and every SI quantity. Finally, in the application example, the best performing heterogeneous interconnects are used to create larger crossbar arrays with sizes 64 × 64, 128 × 128. Further, the key performance matrices such as the delay time, the rise time and the fall time are analyzed and compared with the conventional crossbars made from the copper interconnects. The results in application example proved that the heterogeneous interconnects performs better than the copper interconnects for neuromorphic computing.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"379-387"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Enhanced Copper-Graphene Hetero Interconnect Structures in Crossbar Arrays for Neuromorphic Computing\",\"authors\":\"Suyash Kushwaha;Chintu Bhaskara Rao;Shamini P R;Sourajeet Roy;Rohit Sharma\",\"doi\":\"10.1109/JMMCT.2025.3593872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, novel copper graphene heterogeneous interconnect structures are proposed which retain the ease of fabrication while having far better electrical performance when compared to the conventional copper interconnects. In the nanoscale regime, signal integrity (SI) of the copper interconnects degrades significantly. To address the signal integrity issues, these heterogeneous interconnects are developed at 7 nm technology nodes which are further used to make the crossbar arrays for neuromorphic computing. The proposed copper graphene heterogeneous interconnects were designed by stacking the layers of copper and multilayer graphene nanoribbons (MLGNRs) one over the other and a detailed signal integrity analysis is done based on the quantities like the per unit length Resistance, Insertion Loss (IL), Return Loss (RL), eye diagrams, surface charge density and volume current density. The results shows that the proposed interconnects outperformed the copper interconnects based on each and every SI quantity. Finally, in the application example, the best performing heterogeneous interconnects are used to create larger crossbar arrays with sizes 64 × 64, 128 × 128. Further, the key performance matrices such as the delay time, the rise time and the fall time are analyzed and compared with the conventional crossbars made from the copper interconnects. The results in application example proved that the heterogeneous interconnects performs better than the copper interconnects for neuromorphic computing.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"10 \",\"pages\":\"379-387\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11106507/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11106507/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Performance Enhanced Copper-Graphene Hetero Interconnect Structures in Crossbar Arrays for Neuromorphic Computing
In this paper, novel copper graphene heterogeneous interconnect structures are proposed which retain the ease of fabrication while having far better electrical performance when compared to the conventional copper interconnects. In the nanoscale regime, signal integrity (SI) of the copper interconnects degrades significantly. To address the signal integrity issues, these heterogeneous interconnects are developed at 7 nm technology nodes which are further used to make the crossbar arrays for neuromorphic computing. The proposed copper graphene heterogeneous interconnects were designed by stacking the layers of copper and multilayer graphene nanoribbons (MLGNRs) one over the other and a detailed signal integrity analysis is done based on the quantities like the per unit length Resistance, Insertion Loss (IL), Return Loss (RL), eye diagrams, surface charge density and volume current density. The results shows that the proposed interconnects outperformed the copper interconnects based on each and every SI quantity. Finally, in the application example, the best performing heterogeneous interconnects are used to create larger crossbar arrays with sizes 64 × 64, 128 × 128. Further, the key performance matrices such as the delay time, the rise time and the fall time are analyzed and compared with the conventional crossbars made from the copper interconnects. The results in application example proved that the heterogeneous interconnects performs better than the copper interconnects for neuromorphic computing.