{"title":"基于ntt的串行和并行流水线多项式模乘法体系结构","authors":"Sin-Wei Chiu;Keshab K. Parhi","doi":"10.1109/TVLSI.2025.3576782","DOIUrl":null,"url":null,"abstract":"Quantum computers pose a significant threat to modern cryptographic systems by efficiently solving problems such as integer factorization through Shor’s algorithm. Homomorphic encryption (HE) schemes based on ring learning with errors (Ring-LWE) offer a quantum-resistant framework for secure computations on encrypted data. Many of these schemes rely on polynomial multiplication, which can be efficiently accelerated using the number theoretic transform (NTT) in leveled HE, ensuring practical performance for privacy-preserving applications. This article presents a novel NTT-based serial pipelined multiplier that achieves full-hardware utilization through interleaved folding, and overcomes the 50% under-utilization limitation of the conventional serial R2MDC architecture. In addition, it explores tradeoffs in pipelined parallel designs, including serial, 2-parallel, and 4-parallel architectures. Our designs leverage increased parallelism, efficient folding techniques, and optimizations for a selected constant modulus to achieve superior throughput (TP) compared with state-of-the-art implementations. While the serial fold design minimizes area consumption, the 4-parallel design maximizes TP. Experimental results on the Virtex-7 platform demonstrate that our architectures achieve at least 2.22 times higher TP/area for a polynomial length of 1024 and 1.84 times for a polynomial length of 4096 in the serial fold design, while the 4-parallel design achieves at least 2.78 times and 2.79 times, respectively. The efficiency gain is even more pronounced in TP squared over area, where the serial fold and 4-parallel designs outperform prior works by at least 4.98 times and 26.43 times for a polynomial length of 1024 and 6.7 times and 43.77 times for a polynomial length of 4096, respectively. These results highlight the effectiveness of our architectures in balancing performance, area efficiency, and flexibility, making them well-suited for high-speed cryptographic applications.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 9","pages":"2474-2487"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Architectures for Serial and Parallel Pipelined NTT-Based Polynomial Modular Multiplication\",\"authors\":\"Sin-Wei Chiu;Keshab K. Parhi\",\"doi\":\"10.1109/TVLSI.2025.3576782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computers pose a significant threat to modern cryptographic systems by efficiently solving problems such as integer factorization through Shor’s algorithm. Homomorphic encryption (HE) schemes based on ring learning with errors (Ring-LWE) offer a quantum-resistant framework for secure computations on encrypted data. Many of these schemes rely on polynomial multiplication, which can be efficiently accelerated using the number theoretic transform (NTT) in leveled HE, ensuring practical performance for privacy-preserving applications. This article presents a novel NTT-based serial pipelined multiplier that achieves full-hardware utilization through interleaved folding, and overcomes the 50% under-utilization limitation of the conventional serial R2MDC architecture. In addition, it explores tradeoffs in pipelined parallel designs, including serial, 2-parallel, and 4-parallel architectures. Our designs leverage increased parallelism, efficient folding techniques, and optimizations for a selected constant modulus to achieve superior throughput (TP) compared with state-of-the-art implementations. While the serial fold design minimizes area consumption, the 4-parallel design maximizes TP. Experimental results on the Virtex-7 platform demonstrate that our architectures achieve at least 2.22 times higher TP/area for a polynomial length of 1024 and 1.84 times for a polynomial length of 4096 in the serial fold design, while the 4-parallel design achieves at least 2.78 times and 2.79 times, respectively. The efficiency gain is even more pronounced in TP squared over area, where the serial fold and 4-parallel designs outperform prior works by at least 4.98 times and 26.43 times for a polynomial length of 1024 and 6.7 times and 43.77 times for a polynomial length of 4096, respectively. These results highlight the effectiveness of our architectures in balancing performance, area efficiency, and flexibility, making them well-suited for high-speed cryptographic applications.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"33 9\",\"pages\":\"2474-2487\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11030819/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11030819/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Architectures for Serial and Parallel Pipelined NTT-Based Polynomial Modular Multiplication
Quantum computers pose a significant threat to modern cryptographic systems by efficiently solving problems such as integer factorization through Shor’s algorithm. Homomorphic encryption (HE) schemes based on ring learning with errors (Ring-LWE) offer a quantum-resistant framework for secure computations on encrypted data. Many of these schemes rely on polynomial multiplication, which can be efficiently accelerated using the number theoretic transform (NTT) in leveled HE, ensuring practical performance for privacy-preserving applications. This article presents a novel NTT-based serial pipelined multiplier that achieves full-hardware utilization through interleaved folding, and overcomes the 50% under-utilization limitation of the conventional serial R2MDC architecture. In addition, it explores tradeoffs in pipelined parallel designs, including serial, 2-parallel, and 4-parallel architectures. Our designs leverage increased parallelism, efficient folding techniques, and optimizations for a selected constant modulus to achieve superior throughput (TP) compared with state-of-the-art implementations. While the serial fold design minimizes area consumption, the 4-parallel design maximizes TP. Experimental results on the Virtex-7 platform demonstrate that our architectures achieve at least 2.22 times higher TP/area for a polynomial length of 1024 and 1.84 times for a polynomial length of 4096 in the serial fold design, while the 4-parallel design achieves at least 2.78 times and 2.79 times, respectively. The efficiency gain is even more pronounced in TP squared over area, where the serial fold and 4-parallel designs outperform prior works by at least 4.98 times and 26.43 times for a polynomial length of 1024 and 6.7 times and 43.77 times for a polynomial length of 4096, respectively. These results highlight the effectiveness of our architectures in balancing performance, area efficiency, and flexibility, making them well-suited for high-speed cryptographic applications.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.