{"title":"简化正则图,将其顶点划分为总支配集和独立支配集","authors":"Teresa W. Haynes , Michael A. Henning","doi":"10.1016/j.dam.2025.08.035","DOIUrl":null,"url":null,"abstract":"<div><div>A graph <span><math><mi>G</mi></math></span> whose vertex set can be partitioned into a total dominating set and an independent dominating set is called a TI-graph. There exist infinite families of graphs that are not TI-graphs. We define the TI-reduction number <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> to be the minimum number of edges that must be removed from <span><math><mi>G</mi></math></span> to ensure that the resulting graph is a TI-graph. We observe that the TI-reduction number exists for all connected graphs with minimum degree at least 2 with one exception, namely the 5-cycle. We show that if <span><math><mi>G</mi></math></span> is a cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≠</mo><mn>5</mn></mrow></math></span>, then <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn></mrow></math></span>, with equality if and only if <span><math><mrow><mi>n</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mrow><mo>(</mo><mi>mod</mi><mspace></mspace><mn>3</mn><mo>)</mo></mrow></mrow></math></span>. If <span><math><mi>G</mi></math></span> is a cubic graph of order <span><math><mi>n</mi></math></span>, then we show that <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>n</mi></mrow></math></span>. For <span><math><mrow><mi>r</mi><mo>≥</mo><mn>4</mn></mrow></math></span> we show that if <span><math><mi>G</mi></math></span> is an <span><math><mi>r</mi></math></span>-regular graph of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mfenced><mrow><mfrac><mrow><mi>r</mi></mrow><mrow><mn>3</mn><mi>r</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></mfenced><mi>n</mi></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 209-221"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing regular graphs to partition their vertices into a total dominating set and an independent dominating set\",\"authors\":\"Teresa W. Haynes , Michael A. Henning\",\"doi\":\"10.1016/j.dam.2025.08.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A graph <span><math><mi>G</mi></math></span> whose vertex set can be partitioned into a total dominating set and an independent dominating set is called a TI-graph. There exist infinite families of graphs that are not TI-graphs. We define the TI-reduction number <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> to be the minimum number of edges that must be removed from <span><math><mi>G</mi></math></span> to ensure that the resulting graph is a TI-graph. We observe that the TI-reduction number exists for all connected graphs with minimum degree at least 2 with one exception, namely the 5-cycle. We show that if <span><math><mi>G</mi></math></span> is a cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≠</mo><mn>5</mn></mrow></math></span>, then <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn></mrow></math></span>, with equality if and only if <span><math><mrow><mi>n</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mrow><mo>(</mo><mi>mod</mi><mspace></mspace><mn>3</mn><mo>)</mo></mrow></mrow></math></span>. If <span><math><mi>G</mi></math></span> is a cubic graph of order <span><math><mi>n</mi></math></span>, then we show that <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>n</mi></mrow></math></span>. For <span><math><mrow><mi>r</mi><mo>≥</mo><mn>4</mn></mrow></math></span> we show that if <span><math><mi>G</mi></math></span> is an <span><math><mi>r</mi></math></span>-regular graph of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mfenced><mrow><mfrac><mrow><mi>r</mi></mrow><mrow><mn>3</mn><mi>r</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></mfenced><mi>n</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"379 \",\"pages\":\"Pages 209-221\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004792\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004792","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Reducing regular graphs to partition their vertices into a total dominating set and an independent dominating set
A graph whose vertex set can be partitioned into a total dominating set and an independent dominating set is called a TI-graph. There exist infinite families of graphs that are not TI-graphs. We define the TI-reduction number of a graph to be the minimum number of edges that must be removed from to ensure that the resulting graph is a TI-graph. We observe that the TI-reduction number exists for all connected graphs with minimum degree at least 2 with one exception, namely the 5-cycle. We show that if is a cycle with and , then , with equality if and only if . If is a cubic graph of order , then we show that . For we show that if is an -regular graph of order , then .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.