简化正则图,将其顶点划分为总支配集和独立支配集

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Teresa W. Haynes , Michael A. Henning
{"title":"简化正则图,将其顶点划分为总支配集和独立支配集","authors":"Teresa W. Haynes ,&nbsp;Michael A. Henning","doi":"10.1016/j.dam.2025.08.035","DOIUrl":null,"url":null,"abstract":"<div><div>A graph <span><math><mi>G</mi></math></span> whose vertex set can be partitioned into a total dominating set and an independent dominating set is called a TI-graph. There exist infinite families of graphs that are not TI-graphs. We define the TI-reduction number <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> to be the minimum number of edges that must be removed from <span><math><mi>G</mi></math></span> to ensure that the resulting graph is a TI-graph. We observe that the TI-reduction number exists for all connected graphs with minimum degree at least 2 with one exception, namely the 5-cycle. We show that if <span><math><mi>G</mi></math></span> is a cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≠</mo><mn>5</mn></mrow></math></span>, then <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn></mrow></math></span>, with equality if and only if <span><math><mrow><mi>n</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mrow><mo>(</mo><mi>mod</mi><mspace></mspace><mn>3</mn><mo>)</mo></mrow></mrow></math></span>. If <span><math><mi>G</mi></math></span> is a cubic graph of order <span><math><mi>n</mi></math></span>, then we show that <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>n</mi></mrow></math></span>. For <span><math><mrow><mi>r</mi><mo>≥</mo><mn>4</mn></mrow></math></span> we show that if <span><math><mi>G</mi></math></span> is an <span><math><mi>r</mi></math></span>-regular graph of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mfenced><mrow><mfrac><mrow><mi>r</mi></mrow><mrow><mn>3</mn><mi>r</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></mfenced><mi>n</mi></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 209-221"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing regular graphs to partition their vertices into a total dominating set and an independent dominating set\",\"authors\":\"Teresa W. Haynes ,&nbsp;Michael A. Henning\",\"doi\":\"10.1016/j.dam.2025.08.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A graph <span><math><mi>G</mi></math></span> whose vertex set can be partitioned into a total dominating set and an independent dominating set is called a TI-graph. There exist infinite families of graphs that are not TI-graphs. We define the TI-reduction number <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> to be the minimum number of edges that must be removed from <span><math><mi>G</mi></math></span> to ensure that the resulting graph is a TI-graph. We observe that the TI-reduction number exists for all connected graphs with minimum degree at least 2 with one exception, namely the 5-cycle. We show that if <span><math><mi>G</mi></math></span> is a cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≠</mo><mn>5</mn></mrow></math></span>, then <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn></mrow></math></span>, with equality if and only if <span><math><mrow><mi>n</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mrow><mo>(</mo><mi>mod</mi><mspace></mspace><mn>3</mn><mo>)</mo></mrow></mrow></math></span>. If <span><math><mi>G</mi></math></span> is a cubic graph of order <span><math><mi>n</mi></math></span>, then we show that <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>n</mi></mrow></math></span>. For <span><math><mrow><mi>r</mi><mo>≥</mo><mn>4</mn></mrow></math></span> we show that if <span><math><mi>G</mi></math></span> is an <span><math><mi>r</mi></math></span>-regular graph of order <span><math><mi>n</mi></math></span>, then <span><math><mrow><msup><mrow><mi>ti</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mfenced><mrow><mfrac><mrow><mi>r</mi></mrow><mrow><mn>3</mn><mi>r</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></mfenced><mi>n</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"379 \",\"pages\":\"Pages 209-221\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004792\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004792","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图G的顶点集可以划分为一个总控制集和一个独立控制集,我们称之为ti图。存在无限的非ti图族。我们定义图G的ti -还原数ti−(G)是为了保证生成的图是一个ti -图而必须从图G上去除的最小边数。我们观察到,除了一个例外,所有最小度至少为2的连通图都存在ti -约简数,即5循环。证明了如果G是n≥3且n≠5的环Cn,则ti−(G)≤2,当且仅当n≡2(mod3)时相等。如果G是n阶的三次图,则证明ti−(G)≤14n。当r≥4时,证明了如果G是n阶的r正则图,则ti−(G)≤12(r−1)r3r−1n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing regular graphs to partition their vertices into a total dominating set and an independent dominating set
A graph G whose vertex set can be partitioned into a total dominating set and an independent dominating set is called a TI-graph. There exist infinite families of graphs that are not TI-graphs. We define the TI-reduction number ti(G) of a graph G to be the minimum number of edges that must be removed from G to ensure that the resulting graph is a TI-graph. We observe that the TI-reduction number exists for all connected graphs with minimum degree at least 2 with one exception, namely the 5-cycle. We show that if G is a cycle Cn with n3 and n5, then ti(G)2, with equality if and only if n2(mod3). If G is a cubic graph of order n, then we show that ti(G)14n. For r4 we show that if G is an r-regular graph of order n, then ti(G)12(r1)r3r1n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信