{"title":"无短周期图的1-隔离数的新结果","authors":"Yirui Huang, Gang Zhang, Xian’an Jin","doi":"10.1016/j.dam.2025.08.033","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph. A subset <span><math><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is called a 1-isolating set of <span><math><mi>G</mi></math></span> if <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>−</mo><mi>N</mi><mrow><mo>[</mo><mi>D</mi><mo>]</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mn>1</mn></mrow></math></span>, that is, <span><math><mrow><mi>G</mi><mo>−</mo><mi>N</mi><mrow><mo>[</mo><mi>D</mi><mo>]</mo></mrow></mrow></math></span> consists of isolated edges and isolated vertices only. The 1-isolation number of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>ι</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the cardinality of a smallest 1-isolating set of <span><math><mi>G</mi></math></span>. In this paper, we prove that if <span><math><mrow><mi>G</mi><mo>∉</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>}</mo></mrow></mrow></math></span> is a connected graph of order <span><math><mi>n</mi></math></span> without 6-cycles, or without induced 5- and 6-cycles, then <span><math><mrow><msub><mrow><mi>ι</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></math></span>. Both bounds are sharp.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"379 ","pages":"Pages 222-235"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New results on the 1-isolation number of graphs without short cycles\",\"authors\":\"Yirui Huang, Gang Zhang, Xian’an Jin\",\"doi\":\"10.1016/j.dam.2025.08.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi></math></span> be a graph. A subset <span><math><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is called a 1-isolating set of <span><math><mi>G</mi></math></span> if <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>−</mo><mi>N</mi><mrow><mo>[</mo><mi>D</mi><mo>]</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mn>1</mn></mrow></math></span>, that is, <span><math><mrow><mi>G</mi><mo>−</mo><mi>N</mi><mrow><mo>[</mo><mi>D</mi><mo>]</mo></mrow></mrow></math></span> consists of isolated edges and isolated vertices only. The 1-isolation number of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>ι</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the cardinality of a smallest 1-isolating set of <span><math><mi>G</mi></math></span>. In this paper, we prove that if <span><math><mrow><mi>G</mi><mo>∉</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>7</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>11</mn></mrow></msub><mo>}</mo></mrow></mrow></math></span> is a connected graph of order <span><math><mi>n</mi></math></span> without 6-cycles, or without induced 5- and 6-cycles, then <span><math><mrow><msub><mrow><mi>ι</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></math></span>. Both bounds are sharp.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"379 \",\"pages\":\"Pages 222-235\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004743\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004743","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
New results on the 1-isolation number of graphs without short cycles
Let be a graph. A subset is called a 1-isolating set of if , that is, consists of isolated edges and isolated vertices only. The 1-isolation number of , denoted by , is the cardinality of a smallest 1-isolating set of . In this paper, we prove that if is a connected graph of order without 6-cycles, or without induced 5- and 6-cycles, then . Both bounds are sharp.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.