基于改进CZT的低信噪比音频篡改检测框架

IF 2.5 3区 医学 Q1 MEDICINE, LEGAL
Bing Li, Wei Qiu, Xiao Huang, Keyan Yang, Wenxuan Yao
{"title":"基于改进CZT的低信噪比音频篡改检测框架","authors":"Bing Li,&nbsp;Wei Qiu,&nbsp;Xiao Huang,&nbsp;Keyan Yang,&nbsp;Wenxuan Yao","doi":"10.1016/j.forsciint.2025.112619","DOIUrl":null,"url":null,"abstract":"<div><div>Extracting the electric network frequency (ENF) from digital audio signals is a crucial means of forensic evidence. However, ENF signal extraction is susceptible to noise, making it challenging to establish a reliable matching relationship with the reference frequency database, especially under low signal-to-noise ratio (SNR) conditions. To solve this problem, an ENF extraction and tampering detection framework (ENF-ETD) for low SNR conditions is proposed in this article. Firstly, a modified Chirp Z-transform (MCZT) method is proposed to extract the ENF signal in digital audio. Subsequently, by comparing with the actual grid frequency, the Pearson correlation coefficient (PCC) and Euclidean distance (ED) are used to evaluate the accuracy of ENF estimation and determine whether the audio has been tampered with. Finally, the simulations and hardware-based experiments verify the proposed ENF-ETD framework’s effectiveness in noise immunity and digital audio tampering detection.</div></div>","PeriodicalId":12341,"journal":{"name":"Forensic science international","volume":"377 ","pages":"Article 112619"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An audio tampering detection framework for low SNR conditions based on modified CZT\",\"authors\":\"Bing Li,&nbsp;Wei Qiu,&nbsp;Xiao Huang,&nbsp;Keyan Yang,&nbsp;Wenxuan Yao\",\"doi\":\"10.1016/j.forsciint.2025.112619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Extracting the electric network frequency (ENF) from digital audio signals is a crucial means of forensic evidence. However, ENF signal extraction is susceptible to noise, making it challenging to establish a reliable matching relationship with the reference frequency database, especially under low signal-to-noise ratio (SNR) conditions. To solve this problem, an ENF extraction and tampering detection framework (ENF-ETD) for low SNR conditions is proposed in this article. Firstly, a modified Chirp Z-transform (MCZT) method is proposed to extract the ENF signal in digital audio. Subsequently, by comparing with the actual grid frequency, the Pearson correlation coefficient (PCC) and Euclidean distance (ED) are used to evaluate the accuracy of ENF estimation and determine whether the audio has been tampered with. Finally, the simulations and hardware-based experiments verify the proposed ENF-ETD framework’s effectiveness in noise immunity and digital audio tampering detection.</div></div>\",\"PeriodicalId\":12341,\"journal\":{\"name\":\"Forensic science international\",\"volume\":\"377 \",\"pages\":\"Article 112619\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic science international\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379073825002579\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic science international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379073825002579","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

摘要

从数字音频信号中提取电网频率(ENF)是取证的重要手段。然而,ENF信号提取容易受到噪声的影响,特别是在低信噪比(SNR)条件下,很难与参考频率数据库建立可靠的匹配关系。为了解决这一问题,本文提出了一种低信噪比条件下的ENF提取和篡改检测框架(ENF- etd)。首先,提出了一种改进的Chirp z变换(MCZT)方法来提取数字音频中的ENF信号。随后,通过与实际栅格频率的比较,利用Pearson相关系数(PCC)和Euclidean distance (ED)来评价ENF估计的准确性,判断音频是否被篡改。最后,通过仿真和硬件实验验证了所提出的ENF-ETD框架在噪声抗扰和数字音频篡改检测方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An audio tampering detection framework for low SNR conditions based on modified CZT
Extracting the electric network frequency (ENF) from digital audio signals is a crucial means of forensic evidence. However, ENF signal extraction is susceptible to noise, making it challenging to establish a reliable matching relationship with the reference frequency database, especially under low signal-to-noise ratio (SNR) conditions. To solve this problem, an ENF extraction and tampering detection framework (ENF-ETD) for low SNR conditions is proposed in this article. Firstly, a modified Chirp Z-transform (MCZT) method is proposed to extract the ENF signal in digital audio. Subsequently, by comparing with the actual grid frequency, the Pearson correlation coefficient (PCC) and Euclidean distance (ED) are used to evaluate the accuracy of ENF estimation and determine whether the audio has been tampered with. Finally, the simulations and hardware-based experiments verify the proposed ENF-ETD framework’s effectiveness in noise immunity and digital audio tampering detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forensic science international
Forensic science international 医学-医学:法
CiteScore
5.00
自引率
9.10%
发文量
285
审稿时长
49 days
期刊介绍: Forensic Science International is the flagship journal in the prestigious Forensic Science International family, publishing the most innovative, cutting-edge, and influential contributions across the forensic sciences. Fields include: forensic pathology and histochemistry, chemistry, biochemistry and toxicology, biology, serology, odontology, psychiatry, anthropology, digital forensics, the physical sciences, firearms, and document examination, as well as investigations of value to public health in its broadest sense, and the important marginal area where science and medicine interact with the law. The journal publishes: Case Reports Commentaries Letters to the Editor Original Research Papers (Regular Papers) Rapid Communications Review Articles Technical Notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信