微波乳房成像的一致性量化:激光扫描评估乳房体积和形状

IF 3.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Carina M. Butterworth;Pedram Mojabi;Elise C. Fear
{"title":"微波乳房成像的一致性量化:激光扫描评估乳房体积和形状","authors":"Carina M. Butterworth;Pedram Mojabi;Elise C. Fear","doi":"10.1109/JERM.2025.3531693","DOIUrl":null,"url":null,"abstract":"Microwave breast imaging is a promising approach that requires additional information such as the position, shape, and volume of the breast in the system for rigorous validation. The objectives of this proof-of-concept study were to develop a workflow to calculate the shape and volume of a breast positioned in contact with two imaging plates and to apply this workflow to assess the consistency of breast placement at sequential scans. The use of externally placed laser scanners facilitates capturing the shape and volume of the breast when positioned in the microwave system. A workflow was developed to estimate regions lacking observable measurements from the laser scanners, specifically implementing meshing, filtering, and surface estimation. The consistency of the breast shape and volume at sequential scans was quantified with the Dice coefficient, modified Hausdorff distance (MHD), and Fréchet distance. The study achieved an average Dice coefficient of 0.74 and MHD better than 10 mm, with the average below 4 mm. The Fréchet distances were higher than the MHD but demonstrated consistency with the phantom. Overall, this work demonstrates consistent placement of the breast at sequential scans and provides a framework for further investigation into the microwave signals and images.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 3","pages":"335-343"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Consistency of Microwave Breast Imaging: Laser Scanning for Assessing Breast Volume and Shape\",\"authors\":\"Carina M. Butterworth;Pedram Mojabi;Elise C. Fear\",\"doi\":\"10.1109/JERM.2025.3531693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microwave breast imaging is a promising approach that requires additional information such as the position, shape, and volume of the breast in the system for rigorous validation. The objectives of this proof-of-concept study were to develop a workflow to calculate the shape and volume of a breast positioned in contact with two imaging plates and to apply this workflow to assess the consistency of breast placement at sequential scans. The use of externally placed laser scanners facilitates capturing the shape and volume of the breast when positioned in the microwave system. A workflow was developed to estimate regions lacking observable measurements from the laser scanners, specifically implementing meshing, filtering, and surface estimation. The consistency of the breast shape and volume at sequential scans was quantified with the Dice coefficient, modified Hausdorff distance (MHD), and Fréchet distance. The study achieved an average Dice coefficient of 0.74 and MHD better than 10 mm, with the average below 4 mm. The Fréchet distances were higher than the MHD but demonstrated consistency with the phantom. Overall, this work demonstrates consistent placement of the breast at sequential scans and provides a framework for further investigation into the microwave signals and images.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":\"9 3\",\"pages\":\"335-343\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10877767/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10877767/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

微波乳房成像是一种很有前途的方法,需要额外的信息,如乳房在系统中的位置、形状和体积,以进行严格的验证。这项概念验证研究的目的是开发一个工作流程来计算与两个成像板接触的乳房的形状和体积,并应用该工作流程来评估连续扫描时乳房放置的一致性。当放置在微波系统中时,使用外部放置的激光扫描仪有助于捕获乳房的形状和体积。开发了一个工作流程来估计缺乏激光扫描仪可观察测量的区域,特别是实现网格划分,滤波和表面估计。通过Dice系数、修正Hausdorff距离(MHD)和fr距离来量化连续扫描时乳房形状和体积的一致性。研究结果表明,平均Dice系数为0.74,MHD优于10 mm,平均小于4 mm。与MHD相比,fsm的距离更高,但与幻影的距离一致。总的来说,这项工作证明了连续扫描中乳房的一致位置,并为进一步研究微波信号和图像提供了框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying Consistency of Microwave Breast Imaging: Laser Scanning for Assessing Breast Volume and Shape
Microwave breast imaging is a promising approach that requires additional information such as the position, shape, and volume of the breast in the system for rigorous validation. The objectives of this proof-of-concept study were to develop a workflow to calculate the shape and volume of a breast positioned in contact with two imaging plates and to apply this workflow to assess the consistency of breast placement at sequential scans. The use of externally placed laser scanners facilitates capturing the shape and volume of the breast when positioned in the microwave system. A workflow was developed to estimate regions lacking observable measurements from the laser scanners, specifically implementing meshing, filtering, and surface estimation. The consistency of the breast shape and volume at sequential scans was quantified with the Dice coefficient, modified Hausdorff distance (MHD), and Fréchet distance. The study achieved an average Dice coefficient of 0.74 and MHD better than 10 mm, with the average below 4 mm. The Fréchet distances were higher than the MHD but demonstrated consistency with the phantom. Overall, this work demonstrates consistent placement of the breast at sequential scans and provides a framework for further investigation into the microwave signals and images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信